We consider the problem of reconstructing an unknown bounded function
DOI : 10.5802/smai-jcm.24
Mots-clés : multivariate approximation, weighted least squares, error analysis, convergence rates, random matrices, conditional sampling, polynomial approximation.
@article{SMAI-JCM_2017__3__181_0, author = {Cohen, Albert and Migliorati, Giovanni}, title = {Optimal weighted least-squares methods}, journal = {The SMAI Journal of computational mathematics}, pages = {181--203}, publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles}, volume = {3}, year = {2017}, doi = {10.5802/smai-jcm.24}, mrnumber = {3716755}, zbl = {1416.62177}, language = {en}, url = {https://www.numdam.org/articles/10.5802/smai-jcm.24/} }
TY - JOUR AU - Cohen, Albert AU - Migliorati, Giovanni TI - Optimal weighted least-squares methods JO - The SMAI Journal of computational mathematics PY - 2017 SP - 181 EP - 203 VL - 3 PB - Société de Mathématiques Appliquées et Industrielles UR - https://www.numdam.org/articles/10.5802/smai-jcm.24/ DO - 10.5802/smai-jcm.24 LA - en ID - SMAI-JCM_2017__3__181_0 ER -
%0 Journal Article %A Cohen, Albert %A Migliorati, Giovanni %T Optimal weighted least-squares methods %J The SMAI Journal of computational mathematics %D 2017 %P 181-203 %V 3 %I Société de Mathématiques Appliquées et Industrielles %U https://www.numdam.org/articles/10.5802/smai-jcm.24/ %R 10.5802/smai-jcm.24 %G en %F SMAI-JCM_2017__3__181_0
Cohen, Albert; Migliorati, Giovanni. Optimal weighted least-squares methods. The SMAI Journal of computational mathematics, Tome 3 (2017), pp. 181-203. doi : 10.5802/smai-jcm.24. https://www.numdam.org/articles/10.5802/smai-jcm.24/
[1] A generalized sampling theorem for stable reconstructions in arbitrary bases, J. Fourier Anal. Appl., Volume 18 (2012), pp. 685-716 | DOI | MR | Zbl
[2] Sampling and reconstruction of solutions to the Helmholtz equation, Sampl. Theory Signal Image Process., Volume 13 (2014), pp. 67-89 | MR | Zbl
[3] Discrete least squares polynomial approximation with random evaluations - application to parametric and stochastic elliptic PDEs, M2AN, Volume 49 (2015), pp. 815-837 | DOI | MR | Zbl
[4] On the stability and accuracy of least squares approximations, Found. Comput. Math., Volume 13 (2013), pp. 819-834 | DOI | MR | Zbl
[5] Non-Uniform Random Variate Generation, Springer, 1985
[6] Coherence motivated sampling and convergence analysis of least squares polynomial Chaos regression, Comput. Methods Appl. Mech. Engrg., Volume 290 (2015), pp. 73-97 | DOI | MR | Zbl
[7] A Christoffel function weighted least squares algorithm for collocation approximations, Math. Comp., Volume 86 (2017), pp. 1913-1947 | MR | Zbl
[8] Szegö’s extremum problem on the unit circle, Annals of Mathematics,, Volume 134 (1991), pp. 433-453 | DOI | Zbl
[9] Multivariate Markov-type and Nikolskii-type inequalities for polynomials associated with downward closed multi-index sets, J. Approx. Theory, Volume 189 (2015), pp. 137-159 | DOI | MR | Zbl
[10] Convergence estimates in probability and in expectation for discrete least squares with noisy evaluations at random points, J. Multivar. Analysis, Volume 142 (2015), pp. 167-182 | DOI | MR | Zbl
[11] Analysis of discrete
[12] Géza Freud, orthogonal polynomials and Christoffel Functions. A case study, J. Approx. theory, Volume 48 (1986), pp. 3-167 | DOI | Zbl
[13] Logarithmic Potentials with External Fields, Springer, 1997 | Zbl
[14] User friendly tail bounds for sums of random matrices, Found. Comput. Math., Volume 12 (2012), pp. 389-434 | DOI | MR | Zbl
Cité par Sources :