On s’intéresse à l’évolution d’un système de particules autour d’équilibres thermodynamiques présentant un nombre infini de particules. Il s’agit d’étudier la stabilité asymptotique de solutions à l’équilibre de l’équation de Hartree :
où
We are interested in the evolution of a system of particles around thermodynamical equilibria presenting an infinite number of particles. That is, we study the asymptotic stability of solutions at equilibrium of the Hartree equation :
where
DOI : 10.5802/slsedp.123
@article{SLSEDP_2017-2018____A14_0, author = {de Suzzoni, Anne-Sophie and Collot, Charles}, title = {Un r\'esultat de diffusion pour l{\textquoteright}\'equation de {Hartree} autour de~solutions non localis\'ees}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:14}, pages = {1--12}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2017-2018}, doi = {10.5802/slsedp.123}, language = {fr}, url = {https://www.numdam.org/articles/10.5802/slsedp.123/} }
TY - JOUR AU - de Suzzoni, Anne-Sophie AU - Collot, Charles TI - Un résultat de diffusion pour l’équation de Hartree autour de solutions non localisées JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:14 PY - 2017-2018 SP - 1 EP - 12 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://www.numdam.org/articles/10.5802/slsedp.123/ DO - 10.5802/slsedp.123 LA - fr ID - SLSEDP_2017-2018____A14_0 ER -
%0 Journal Article %A de Suzzoni, Anne-Sophie %A Collot, Charles %T Un résultat de diffusion pour l’équation de Hartree autour de solutions non localisées %J Séminaire Laurent Schwartz — EDP et applications %Z talk:14 %D 2017-2018 %P 1-12 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://www.numdam.org/articles/10.5802/slsedp.123/ %R 10.5802/slsedp.123 %G fr %F SLSEDP_2017-2018____A14_0
de Suzzoni, Anne-Sophie; Collot, Charles. Un résultat de diffusion pour l’équation de Hartree autour de solutions non localisées. Séminaire Laurent Schwartz — EDP et applications (2017-2018), Exposé no. 14, 12 p. doi : 10.5802/slsedp.123. https://www.numdam.org/articles/10.5802/slsedp.123/
[1] Claude Bardos, Laszlo Erdős, François Golse, Norbert Mauser, and Horng-Tzer Yau, Derivation of the Schrödinger-Poisson equation from the quantum
[2] Claude Bardos, François Golse, Alex D. Gottlieb, and Norbert J. Mauser, Mean field dynamics of fermions and the time-dependent Hartree-Fock equation, J. Math. Pures Appl. (9) 82 (2003), no. 6, 665–683. | DOI | MR | Zbl
[3] Niels Benedikter, Marcello Porta, and Benjamin Schlein, Mean–field evolution of fermionic systems, Communications in Mathematical Physics 331 (2014), no. 3, 1087–1131 (English). | DOI | MR | Zbl
[4] Thomas Chen, Younghun Hong, and Nataša Pavlović, Global well-posedness of the NLS system for infinitely many fermions, Arch. Ration. Mech. Anal. 224 (2017), no. 1, 91–123. | DOI | MR | Zbl
[5] —, On the scattering problem for infinitely many fermions in dimensions
[6] Anne-Sophie de Suzzoni, An equation on random variables and systems of fermions, , 2015. | arXiv
[7] Alexander Elgart, László Erdős, Benjamin Schlein, and Horng-Tzer Yau, Nonlinear Hartree equation as the mean field limit of weakly coupled fermions, J. Math. Pures Appl. (9) 83 (2004), no. 10, 1241–1273. | DOI | MR | Zbl
[8] Jürg Fröhlich and Antti Knowles, A microscopic derivation of the time-dependent Hartree-Fock equation with Coulomb two-body interaction, J. Stat. Phys. 145 (2011), no. 1, 23–50. | DOI | MR | Zbl
[9] Zihua Guo, Zaher Hani, and Kenji Nakanishi, Scattering for the 3D Gross-Pitaevskii equation, Comm. Math. Phys. 359 (2018), no. 1, 265–295. | DOI | MR | Zbl
[10] Stephen Gustafson, Kenji Nakanishi, and Tai-Peng Tsai, Scattering for the Gross-Pitaevskii equation, Math. Res. Lett. 13 (2006), no. 2-3, 273–285. | DOI | MR | Zbl
[11] —, Scattering theory for the Gross-Pitaevskii equation in three dimensions, Commun. Contemp. Math. 11 (2009), no. 4, 657–707. | DOI | MR | Zbl
[12] Mathieu Lewin and Julien Sabin, The Hartree equation for infinitely many particles, II : Dispersion and scattering in 2D, Anal. PDE 7 (2014), no. 6, 1339–1363. | DOI | MR | Zbl
[13] —, The Hartree equation for infinitely many particles, I : Well-posedness theory, Comm. Math. Phys. 334 (2015), no. 1, 117–170. | DOI | MR | Zbl
[14] Jens Linhard, On the properties of a gas of charged particles, Dan. Vid. Selsk Mat.-Fys. Medd. 28 (1954), no. 1, 8.
Cité par Sources :