On présente des résultats classiques et récents dans l’étude de la limite de champ moyen de systèmes de particules stochastiques en interaction. Ces derniers résultats visent à couvrir une plus grande variété de modèles et obtenir des estimations précises de la convergence et sont mises en lien avec le comportement en temps grand des systèmes considérés.
@article{SEDP_2009-2010____A31_0, author = {Bolley, Fran\c{c}ois}, title = {Limite de champ moyen de syst\`emes de particules}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:31}, pages = {1--15}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2009-2010}, language = {fr}, url = {http://www.numdam.org/item/SEDP_2009-2010____A31_0/} }
TY - JOUR AU - Bolley, François TI - Limite de champ moyen de systèmes de particules JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:31 PY - 2009-2010 SP - 1 EP - 15 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://www.numdam.org/item/SEDP_2009-2010____A31_0/ LA - fr ID - SEDP_2009-2010____A31_0 ER -
%0 Journal Article %A Bolley, François %T Limite de champ moyen de systèmes de particules %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:31 %D 2009-2010 %P 1-15 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://www.numdam.org/item/SEDP_2009-2010____A31_0/ %G fr %F SEDP_2009-2010____A31_0
Bolley, François. Limite de champ moyen de systèmes de particules. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2009-2010), Exposé no. 31, 15 p. http://www.numdam.org/item/SEDP_2009-2010____A31_0/
[1] M. Agueh, R. Illner et A. Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic Rel. Models 4, 1 (2011), 1–16. | MR | Zbl
[2] S. Benachour, B. Roynette, D. Talay et P. Vallois. Nonlinear self-stabilizing processes. I. Existence, invariant probability, propagation of chaos. Stoch. Proc. Appl. 75, 2 (1998), 173–201. | MR | Zbl
[3] D. Benedetto, E. Caglioti, J. A. Carrillo et M. Pulvirenti. A non-Maxwellian steady distribution for one-dimensional granular media. J. Statist. Phys. 91, 5-6 (1998), 979–990. | MR | Zbl
[4] F. Bolley. Quantitative concentration inequalities on sample path space for mean field interaction. Esaim Prob. Stat. 14 (2010), 192–209. | EuDML | Numdam | MR | Zbl
[5] F. Bolley, J. A. Cañizo et J. A. Carrillo. Stochastic Mean-Field Limit : Non-Lipschitz Forces and Swarming. A paraître dans Math. Mod. Meth. Appl. Sci. (2011). | MR
[6] F. Bolley, J. A. Cañizo et J. A. Carrillo. Mean-field limit for the stochastic Vicsek model. Prépublication (2011). | MR
[7] F. Bolley, A. Guillin et F. Malrieu. Trend to equilibrium and particle approximation for a weakly selfconsistent Vlasov-Fokker-Planck equation. Math. Mod. Num. Anal 44, 5 (2010), 867–884. | EuDML | Numdam | MR | Zbl
[8] F. Bolley, A. Guillin et C. Villani. Quantitative concentration inequalities for empirical measures on non-compact spaces. Prob. Theor. Rel. Fields 137, 3-4 (2007), 541–593. | MR | Zbl
[9] W. Braun et K. Hepp. The Vlasov Dynamics and Its Fluctuations in the 1/N Limit of Interacting Classical Particles. Commun. Math. Phys. 56 (1977), 101–113. | MR | Zbl
[10] J. A. Cañizo, J. A. Carrillo et J. Rosado. A well-posedness theory in measures for some kinetic models of collective motion. Math. Mod. Meth. Appl. Sci. 21 (2011), 515–539. | MR | Zbl
[11] E. A. Carlen, M. C. Carvalho, M. Loss, J. Le Roux et C. Villani. Entropy and chaos in the Kac model. Kinetic Rel. Models 3, 1 (2010), 85–122. | MR | Zbl
[12] J. A. Carrillo, M. Fornasier, G. Toscani et F. Vecil. Particle, Kinetic, and Hydrodynamic Models of Swarming. In Naldi, G., Pareschi, L., Toscani, G. (eds.) Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Series : Modelling and Simulation in Science and Technology, Birkhauser, (2010), 297–336. | MR | Zbl
[13] J. A. Carrillo, R. J. McCann et C. Villani. Kinetic equilibration rates for granular media and related equations : entropy dissipation and mass transportation estimates. Rev. Mat. Ibero. 19, 3 (2003), 971–1018. | MR | Zbl
[14] P. Cattiaux, A. Guillin et F. Malrieu. Probabilistic approach for granular media equations in the non uniformly case. Prob. Theor. Rel. Fields 140, 1-2 (2008), 19–40. | MR | Zbl
[15] F. Cucker et S. Smale. Emergent behavior in flocks. IEEE Trans. Automat. Control 52 (2007), 852–862. | MR
[16] R. Dobrushin. Vlasov equations. Funct. Anal. Appl.13 (1979), 115–123. | MR | Zbl
[17] M. R. D’Orsogna, Y. L. Chuang, A. L. Bertozzi et L. Chayes. Self-propelled particles with soft-core interactions : patterns, stability, and collapse. Phys. Rev. Lett. 96, 2006.
[18] F. Golse The mean-field limit for the dynamics of large particle systems, Journées équations aux dérivées partielles, Forges-les-Eaux (2003), 1–47. | Numdam | MR | Zbl
[19] F. Golse. The mean-field limit for a regularized Vlasov-Maxwell dynamics. Prépublication (2010).
[20] M. Hauray et P.-E. Jabin. N particles approximation of the Vlasov equations with singular potential. Arch. Rach. Mech. Anal. 183, 3 (2007), 489–524. | MR | Zbl
[21] G. Loeper. Uniqueness of the solution to the Vlasov-Poisson system with bounded density. J. Math. Pures Appl. 9, 86 (2006), 68–79. | MR | Zbl
[22] F. Malrieu. Logarithmic Sobolev inequalities for some nonlinear PDE’s. Stoch. Proc. Appl. 95, 1 (2001), 109–132. | MR | Zbl
[23] F. Malrieu. Convergence to equilibrium for granular media equations and their Euler schemes. Ann. Appl. Probab. 13, 2 (2003), 540–560. | MR | Zbl
[24] H. P. McKean. Propagation of chaos for a class of non-linear parabolic equations. In Lecture Series in Differential Equations, Session 7, Catholic Univ., 1967. | Zbl
[25] S. Méléard. Asymptotic behaviour of some interacting particle systems ; McKean-Vlasov and Boltzmann models. Lecture Notes in Math. 1627, Springer, Berlin, 1996. | MR | Zbl
[26] H. Neunzert. An introduction to the nonlinear Boltzmann-Vlasov equation. Lecture Notes in Math. 1048. Springer, Berlin, 1984. | MR | Zbl
[27] A.-S. Sznitman. Topics in propagation of chaos. Lecture Notes in Math. 1464, Springer, Berlin, 1991. | MR | Zbl
[28] D. Talay. Probabilistic numerical methods for partial differential equations : elements of analysis. Lecture Notes in Math. 1627, Springer, Berlin, 1996. | MR | Zbl
[29] T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen et O. Shochet. Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, (1995), 1226–1229.
[30] C. Villani. Optimal transport, old and new. Grundlehren der math. Wiss. 338, Springer, Berlin, 2009. | MR | Zbl
[31] C. Yates, R. Erban, C. Escudero, L. Couzin, J. Buhl, L. Kevrekidis, P. Maini et D. Sumpter. Inherent noise can facilitate coherence in collective swarm motion. Proc. Nat. Acad. Sci. 106, 14 (2009), 5464–5469.