We consider the focusing nonlinear Schrödinger equations . We prove the existence of two finite time blow up dynamics in the supercritical case and provide for each a qualitative description of the singularity formation near the blow up time.
@article{SEDP_2009-2010____A2_0, author = {Merle, Frank and Rapha\"el, Pierre and Szeftel, J\'er\'emie}, title = {Two blow-up regimes for $L^2$ supercritical nonlinear {Schr\"odinger} equations}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:2}, pages = {1--11}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2009-2010}, language = {en}, url = {http://www.numdam.org/item/SEDP_2009-2010____A2_0/} }
TY - JOUR AU - Merle, Frank AU - Raphaël, Pierre AU - Szeftel, Jérémie TI - Two blow-up regimes for $L^2$ supercritical nonlinear Schrödinger equations JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:2 PY - 2009-2010 SP - 1 EP - 11 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://www.numdam.org/item/SEDP_2009-2010____A2_0/ LA - en ID - SEDP_2009-2010____A2_0 ER -
%0 Journal Article %A Merle, Frank %A Raphaël, Pierre %A Szeftel, Jérémie %T Two blow-up regimes for $L^2$ supercritical nonlinear Schrödinger equations %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:2 %D 2009-2010 %P 1-11 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://www.numdam.org/item/SEDP_2009-2010____A2_0/ %G en %F SEDP_2009-2010____A2_0
Merle, Frank; Raphaël, Pierre; Szeftel, Jérémie. Two blow-up regimes for $L^2$ supercritical nonlinear Schrödinger equations. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2009-2010), Exposé no. 2, 11 p. http://www.numdam.org/item/SEDP_2009-2010____A2_0/
[1] Bourgain, J.; Wang, W., Construction of blow-up solutions for the nonlinear Schrödinger with critical nonlinearity. Ann, Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), no 1-2, 197-215. | Numdam | MR | Zbl
[2] Fibich, G.; Gavish, N.; Wang, X.P., Singular ring solutions of critical and supercritical nonlinear Schrödinger equations, Physica D: Nonlinear Phenomena, 231 (2007), no. 1, 55–86. | MR | Zbl
[3] Gidas, B.; Ni, W.M.; Nirenberg, L., Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209—243. | MR | Zbl
[4] Ginibre, J.; Velo, G., On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case, J. Funct. Anal. 32 (1979), no. 1, 1–32. | MR | Zbl
[5] Kopell, N.; Landman, M., Spatial structure of the focusing singularity of the nonlinear Schrödinger equation: a geometrical analysis, SIAM J. Appl. Math. 55 (1995), no. 5, 1297–1323. | MR | Zbl
[6] Kwong, M. K., Uniqueness of positive solutions of in . Arch. Rational Mech. Anal. 105 (1989), no. 3, 243–266. | MR | Zbl
[7] Merle, F.; Raphaël, P., Blow up dynamic and upper bound on the blow up rate for critical nonlinear Schrödinger equation, Ann. Math. 161 (2005), no. 1, 157–222. | MR
[8] Merle, F.; Raphaël, P., Sharp upper bound on the blow up rate for critical nonlinear Schrödinger equation, Geom. Funct. Anal. 13 (2003), 591-642. | MR | Zbl
[9] Merle, F.; Raphaël, P., On universality of blow up profile for critical nonlinear Schrödinger equation, Invent. Math. 156, 565-672 (2004). | MR | Zbl
[10] Merle, F.; Raphaël, P., Sharp lower bound on the blow up rate for critical nonlinear Schrödinger equation, J. Amer. Math. Soc. 19 (2006), no. 1, 37–90. | MR | Zbl
[11] Merle, F.; Raphaël, P., Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation, Comm. Math. Phys. 253 (2005), no. 3, 675–704. | MR | Zbl
[12] Merle, F.; Raphaël, P.; Szeftel, J., Stable self similar blow up dynamics for slightly supercritical NLS equations, submitted.
[13] Perelman, G., On the blow up phenomenon for the critical nonlinear Schrödinger equation in 1D, Ann. Henri. Poincaré, 2 (2001), 605-673. | MR | Zbl
[14] Raphaël, P., Stability of the log-log bound for blow up solutions to the critical nonlinear Schrödinger equation, Math. Ann. 331 (2005), 577–609. | MR | Zbl
[15] Raphaël, P., Existence and stability of a solution blowing up on a sphere for a supercritical nonlinear Schrödinger equation, Duke Math. J. 134 (2006), no. 2, 199–258. | MR | Zbl
[16] Raphaël, P., Szeftel, J., Standing ring blow up solutions to the quintic NLS in dimension , to appear in Comm. Math. Phys. | MR
[17] Sulem, C.; Sulem, P.L., The nonlinear Schrödinger equation. Self-focusing and wave collapse. Applied Mathematical Sciences, 139. Springer-Verlag, New York, 1999. | MR | Zbl
[18] Weinstein, M.I., Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1983), 567—576. | MR | Zbl
[19] Zakharov, V.E.; Shabat, A.B., Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in non-linear media, Sov. Phys. JETP 34 (1972), 62–69. | MR