Starting from a motivation in the modeling of crowd movement, the paper presents the topics of gradient flows, first in , then in metric spaces, and finally in the space of probability measures endowed with the Wasserstein distance (induced by the quadratic transport cost). Differently from the usual theory by Jordan-Kinderlehrer-Otto and Ambrosio-Gigli-Savaré, we propose an approach where the optimality conditions for the minimizers of the optimization problems that one solves at every time step are obtained by looking at perturbation of the form instead of . The ideas to make this approach rigorous are presented in the case of a Fokker-Planck equation, possibly with an interaction term, and then the paper is concluded by a section, where this method is applied to the original problem of crowd motion (referring to a recent paper in collaboration with B. Maury and A. Roudneff-Chupin for the details).
@article{SEDP_2009-2010____A27_0, author = {Santambrogio, Filippo}, title = {Gradient flows in {Wasserstein} spaces and applications to crowd movement}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:27}, pages = {1--16}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2009-2010}, language = {en}, url = {http://www.numdam.org/item/SEDP_2009-2010____A27_0/} }
TY - JOUR AU - Santambrogio, Filippo TI - Gradient flows in Wasserstein spaces and applications to crowd movement JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:27 PY - 2009-2010 SP - 1 EP - 16 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://www.numdam.org/item/SEDP_2009-2010____A27_0/ LA - en ID - SEDP_2009-2010____A27_0 ER -
%0 Journal Article %A Santambrogio, Filippo %T Gradient flows in Wasserstein spaces and applications to crowd movement %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:27 %D 2009-2010 %P 1-16 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://www.numdam.org/item/SEDP_2009-2010____A27_0/ %G en %F SEDP_2009-2010____A27_0
Santambrogio, Filippo. Gradient flows in Wasserstein spaces and applications to crowd movement. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2009-2010), Exposé no. 27, 16 p. http://www.numdam.org/item/SEDP_2009-2010____A27_0/
[1] L. Ambrosio, Movimenti minimizzanti, Rend. Accad. Naz. Sci. XL Mem. Mat. Sci. Fis. Natur. 113 (1995) 191–246. | MR | Zbl
[2] L. Ambrosio, N. Gigli, G. Savaré, Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics (ETH Zürich, 2005). | MR | Zbl
[3] L. Ambrosio, G. Savaré, Gradient flows of probability measures, Handbook of differential equations, Evolutionary equations 3, ed. by C.M. Dafermos and E. Feireisl (Elsevier, 2007). | MR | Zbl
[4] N. Bellomo, C. Dogbe, On the modelling crowd dynamics from scaling to hyperbolic macroscopic models, Math. Mod. Meth. Appl. Sci. 18 Suppl. (2008) 1317–1345. | MR | Zbl
[5] G. Buttazzo, F. Santambrogio, A model for the optimal planning of an urban area, SIAM J. Math. Anal. 37(2) (2005) 514–530. | MR | Zbl
[6] R.M. Colombo, M.D. Rosini, Pedestrian flows and non-classical shocks, Math. Methods Appl. Sci. 28 (2005) 1553–1567. | MR | Zbl
[7] V. Coscia, C. Canavesio, First-order macroscopic modelling of human crowd dynamics, Math. Mod. Meth. Appl. Sci. 18 (2008) 1217–1247. | MR | Zbl
[8] E. De Giorgi, New problems on minimizing movements, Boundary Value Problems for PDE and Applications, C. Baiocchi and J. L. Lions eds. (Masson, 1993) 81–98. | MR | Zbl
[9] D. Helbing, A fluid dynamic model for the movement of pedestrians, Complex Systems 6 (1992) 391–415. | MR | Zbl
[10] L.F. Henderson, The statistics of crowd fluids, Nature 229 (1971) 381–383.
[11] R. L. Hughes, A continuum theory for the flow of pedestrian, Transport. Res. Part B 36 (2002) 507–535.
[12] R. Jordan, D. Kinderlehrer, F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal. 29(1) (1998) 1–17. | MR | Zbl
[13] L. V. Kantorovich, On the transfer of masses, Dokl. Akad. Nauk. SSSR 37 (1942) 227–229.
[14] B. Maury, A. Roudneff-Chupin and F. Santambrogio, A macroscopic crowd motion model of gradient flow type, Mat. Mod. Meth. Appl. Sci. Vol. 20 No. 10 (2010), 1787–1821 | MR | Zbl
[15] B. Maury, A. Roudneff-Chupin, F. Santambrogio and J. Venel, Handling congestion in crowd motion modeling, in preparation.
[16] B. Maury, J. Venel, Handling of contacts in crowd motion simulations, Traffic and Granular Flow (Springer, 2007). | Zbl
[17] B. Maury, J. Venel, Handling congestion in crowd motion modeling, in preparation.
[18] R. J. McCann, A convexity principle for interacting gases. Adv. Math. (128), no. 1, 153–159, 1997. | MR | Zbl
[19] F. Otto, The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations 26(1–2) (2001) 101–174. | MR | Zbl
[20] B. Piccoli, A. Tosin, Time-evolving measures and macroscopic modeling of pedestrian flow (2008) to appear. | MR
[21] C. Villani, Topics in optimal transportation, Grad. Stud. Math. 58 (AMS, Providence 2003). | MR | Zbl
[22] C. Villani, Optimal transport, old and new, Grundlehren der mathematischen Wissenschaften 338 (2009). | MR | Zbl