@article{SEDP_2009-2010____A25_0, author = {Lemenant, Antoine}, title = {Un th\'eor\`eme de r\'egularit\'e pour les minimiseurs de {Mumford-Shah} dans $\mathbb{R}^3$}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:25}, pages = {1--11}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2009-2010}, language = {fr}, url = {http://www.numdam.org/item/SEDP_2009-2010____A25_0/} }
TY - JOUR AU - Lemenant, Antoine TI - Un théorème de régularité pour les minimiseurs de Mumford-Shah dans $\mathbb{R}^3$ JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:25 PY - 2009-2010 SP - 1 EP - 11 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://www.numdam.org/item/SEDP_2009-2010____A25_0/ LA - fr ID - SEDP_2009-2010____A25_0 ER -
%0 Journal Article %A Lemenant, Antoine %T Un théorème de régularité pour les minimiseurs de Mumford-Shah dans $\mathbb{R}^3$ %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:25 %D 2009-2010 %P 1-11 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://www.numdam.org/item/SEDP_2009-2010____A25_0/ %G fr %F SEDP_2009-2010____A25_0
Lemenant, Antoine. Un théorème de régularité pour les minimiseurs de Mumford-Shah dans $\mathbb{R}^3$. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2009-2010), Exposé no. 25, 11 p. http://www.numdam.org/item/SEDP_2009-2010____A25_0/
[1] Luigi Ambrosio, Nicola Fusco, and Diego Pallara. Partial regularity of free discontinuity sets. II. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 24(1) :39–62, 1997. | Numdam | MR | Zbl
[2] Luigi Ambrosio, Nicola Fusco, and Diego Pallara. Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 2000. | MR | Zbl
[3] Luigi Ambrosio and Diego Pallara. Partial regularity of free discontinuity sets. I. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 24(1) :1–38, 1997. | Numdam | MR | Zbl
[4] A. Bonnet. On the regularity of edges in image segmentation. Ann. Inst. H. Poincaré Anal. Non Linéaire, 13(4) :485–528, 1996. | Numdam | MR | Zbl
[5] Guy David. -regularity for two dimensional almost-minimal sets in . (2008) Preprint Available at http://www.math.u-psud.fr/~gdavid/. | MR
[6] Guy David. -arcs for minimizers of the Mumford-Shah functional. SIAM J. Appl. Math., 56(3) :783–888, 1996. | MR | Zbl
[7] Guy David. Singular sets of minimizers for the Mumford-Shah functional, volume 233 of Progress in Mathematics. Birkhäuser Verlag, Basel, 2005. | MR | Zbl
[8] Guy David. Hölder regularity of two-dimensional almost-minimal sets in . Ann. Fac. Sci. Toulouse Math. (6), 18(1) :65–246, 2009. | Numdam | MR | Zbl
[9] Guy David, Thierry De Pauw, and Tatiana Toro. A generalization of Reifenberg’s theorem in . Geom. Funct. Anal., 18(4) :1168–1235, 2008. | MR | Zbl
[10] E. De Giorgi, M. Carriero, and A. Leaci. Existence theorem for a minimum problem with free discontinuity set. Arch. Rational Mech. Anal., 108(3) :195–218, 1989. | MR | Zbl
[11] Herbert Koch, Giovanni Leoni, and Massimiliano Morini. On optimal regularity of free boundary problems and a conjecture of De Giorgi. Comm. Pure Appl. Math., 58(8) :1051–1076, 2005. | MR | Zbl
[12] Antoine Lemenant. Regularity of the singular set for Mumford-Shah minimizers in near a minimal cone. To apear in Ann. Scu. Norm. Sup. Pisa. | Numdam | Zbl
[13] Antoine Lemenant. Sur la régularité des minimiseurs de Mumford-Shah en dimension et supérieure. Thesis Université Paris Sud XI, Orsay, 2008.
[14] Antoine Lemenant. Energy improvement for energy minimizing functions in the complement of generalized Reifenberg-flat sets. Ann. Scuola Norm. Sup. Pisa Cl. Sci., IX(5) :1–34, 2010. | Numdam | MR | Zbl
[15] David Mumford and Jayant Shah. Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math., 42(5) :577–685, 1989. | MR | Zbl
[16] Jean E. Taylor. The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces. Ann. of Math. (2), 103(3) :489–539, 1976. | MR | Zbl