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NON ZERO FLUX SOLUTIONS OF KINETIC EQUATIONS

MIGUEL ESCOBEDO

1. Introduction

We are interested in a particular type of solutions of kinetic equations that do not
preserve one of the natural invariant quantities related to the physical model. We shall
describe in some details two examples coming from different problems and with different
properties: the Uehling Uhlenbeck equation for Bose particles and the Smoluchowski’s
coagulation equation. A motivation of our work is that we believe that the results
are related with two interesting phenomena, the Bose Einstein condensation and the
gelation.

1.1. Uehling Uhlenbeck equation. A spatially homogeneous diluted weakly inter-
acting gaz of Bose particles is described by the following Boltzmann type equation:

∂f

∂t
(t, p) = Q(f)(t, p), t > 0, p ∈ R3.(1.1)

Q(f)(t, p) =

∫ ∫ ∫

R9

W (p, p2, p3, p4) q(f)dp2dp3dp4(1.2)

q (f) = f3f4(1 + f)(1 + f2)− f f2(1 + f3)(1 + f4)(1.3)

W (p, p2, p3, p4) = δ(p+ p2 − p3 − p4) δ
(
|p|2 + |p2|2 − |p3|2 − |p4|2

)
.(1.4)

where the time has been scaled in such a way that the constant in front of the collision
integral is made equal to one, the mass m of the particles and the Planck constant kB
have been taken equal to one. The function f(t, p) is the density of particles that at
time t ≥ 0 have momentum p ∈ R3. The gas is assumed to be spatially homogeneous
and therefore the density of particles is independent of the spatial variable.

This equation was first derived by L. W. Nordheim in 1928 (cf. [21]) , then by E.
A. Uehling and G. E. Uhrenbeck in 1933 ( cf. [25]). For more recent derivations see E.
Zaremba, T. Nikuni, A. Griffin ([26]) and R. Baier, T. Stockkamp ([1]).

If we assume moreover that the density of particles is radially symmetric, i.e. f(t, p) =
f(t, |p|2) with some minor abuse of notations, and after integration of the angular vari-
ables, the equation reduces to:





∂f

∂t
(t, x1) =

∫ ∫

D(x1)
w (x1, x3, x4) q(f)dx3dx4 ≡ Qr(f)

q (f) = f3f4(1 + f1)(1 + f2)− f1f2(1 + f3)(1 + f4)
x = |p|2, x2 = x3 + x4 − x1

D (x1) ≡ {(x3, x4) : x3 > 0, x4 > 0, x3 + x4 ≥ x1 > 0}
w (x1, x3, x4) =

min(
√
x1,
√
x2,
√
x3,
√
x4)√

x1
.

(1.5)
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Due to the symmetries of the measure W it is easy to obtain formally the following
conservation laws:

d

dt

∫

R3

f(t, p) dp = 0, conservation of the total number of particles N(f)(1.6)

d

dt

∫

R3

pf(t, p) dp = 0, conservation of the momentum N(f)(1.7)

d

dt

∫

R3

|p|2 f(t, p) dp = 0 energy conservation E(f).(1.8)

The term formally means the following. If the function f satisfies (1.1)-(1.4) and all
the calculations that are needed are allowed, then multiplying (1.1) by a test function
ϕ(p), integrating with respect to p ∈ R3using the symmetries of W and q(f) and using
Fubini’s theorem, we obtain

d

dt

∫

R3

ϕ(p) f(t, p) dp =

∫

R12

W (p1, p2, p3, p4) f3f4(1 + f)(1 + f2)×

× [ϕ(p) + ϕ(p2)− ϕ(p3)− ϕ(p4)] dp1dp2dp3dp4(1.9)

from where (1.6)-(1.8) follow by choosing ϕ = 1, ϕ(p) = p and ϕ(p) = |p|2 respectively.
An important property of the equation is the existence of equilibria called Bose-

Einstein distributions :

F (p) =
1

eβ|p−p0|2−µ − 1
, β > 0, p0 ∈ R3, µ ≤ 0,

F (p) =
1

eβ|p−p0|2 − 1
+ ρ δp0 , ρ > 0.

These equilibria satisfy:

∀pi ∈ R3; p1 + p2 = p3 + p4, & |p1|2 + |p2|2 = |p3|2 + |p4|2 :

F (p3)F (p4) (1 + F (p1)) (1 + F (p2)) ≡ F (p1)F (p2) (1 + F (p3)) (1 + F (p4))

from where Q(F ) ≡ 0.
The equilibria describe a gas at equilibrium: the distribution of velocities is at equi-

librium. In particular, for any p0 ∈ R3 and ρ > 0:

d

dt

∫

|p−p0|<ρ
f(t, p) dp =

∫

|p−p0|<ρ
Q(f)(t, p) dp(1.10)

= 0.(1.11)

The quantity in the left hand side of (1.10) can be seen as the flux of particles through
the sphere Sρ(p0) of center p0 and radius ρ. The identity (1.10) is then telling us that
the flux of particles through any sphere Sρ(p0) is zero whatever are the point p0 and the
radius ρ.

1.2. The coagulation equation. In 1936, Carothers [3] first suggested that gelation is
due to the formation of macroscopic branched polymers. In 1941, however, Flory [13, 14]
put this idea into quantitative terms and formulated a theory for the polycondensation
of bi-functional monomers with tri- or tetra-functional branch points. In this equilib-
rium model, bonds are randomly formed with probability p between adjacent nodes on
an infinite Cayley tree, or Bethe lattice. Stockmayer [24] subsequently refined Florys
theory to include the case of arbitrary branch point functionality f and also showed that
the Bethe lattice approach is equivalent to a kinetic rate equation formulation with the
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unscreened reaction kernel W (i, j) = ij. We consider in our second example the con-
tinuous version of this kinetic rate equation with more general reaction kernels W (x, y).
Let us then consider particles of mass denoted by x. When two particles, of masses x1

and x2, collide they aggregate and form a new particle of mass x1 + x2. If we denote by
f(t, x) the density of particles of mass x at time t the coagulation equation reads:

∂f

∂t
(t, x) = C(f)(t, x)(1.12)

C(f)(t, x) =
1

2

∫ x

0
W (x− y, y)f(t, x− y)f(t, y)dy(1.13)

−f(t, x)

∫ ∞

0
W (x, y)f(t, y)dy

where W is a homogeneous function of degree λ satisfying:

W (x, y) = W (y, x).

Here again since the set of particles is spatially homogeneous the density function is inde-
pendent of the spatial variable. Moreover since all the particles have he same momentum,
the density function is independent of that momentum. This situation may be obtained
for example if all the particles move following the same brownian motion assuming that
they are contained in a dilute gas of particles that are themselves undergoing elastic
collisions. The kernel W (x, y) is in that case W (x, y) = (x1/3 + y1/3)(x−1/3 + y−1/3).
This example was the first considered by Smoluchowski in 1916 (cf. [22]) where his goal
was to describe diffusion-limited aggregation and the particles where then following a
brownian motion. Other types of physical situations give rise to different functions W .

An argument similar to that used for the Uehling Uhlenbeck equation shows again
formally that if f is a solution of (1.12), (1.13):

d

dt

∫ ∞

0
x f(t, x) dx = 0 conservation of the total mass.(1.14)

The only equilibrium in that case is f ≡ 0, that obviously satisfies
∫ x0+ρ

x0−ρ
f(t, x) dx = 0

for all x0 > 0 and ρ > 0.

2. Non zero flux solutions.

It turns out that the coagulation equation has other stationary solutions. It may be
easily checked that if W (x, y) = xα yβ + yα xβ with α+ β = λ, then the function

G(x) = x−(3+λ)/2(2.1)

satisfies:

C(G)(x) =

∫ x/2

0
[W (x− y, y)G(x− y)−W (x, y)G(x)]G(y)dy −

−G(x)

∫ ∞

x/2
W (x, y)G(y)dy = 0.(2.2)

Moreover, for every R > 0:
∫ R

0
xC(G) (x) dx = −2π(2.3)

Exp. no XX— Non zero flux solutions of kinetic equations
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Identity (2.3) may be seen as describing a flow of particles going out of the (mass)
interval (0, R) at a constant and finite rate. This was remarked by P.G.J. van Dongen
in [5]

The Uehling Uhlenbeck equation (1.1)-(1.4) does not posses such type of solutions
due to the fact that the term q(f) is not homogeneous with respect to f . Nevertheless
this equation is sometimes approximated by the following:

∂f

∂t
(t, p) = Qm(f)(t, p) ≡

∫ ∫ ∫
W [p, p2, p3, p4] qm(f) dp2dp3dp4(2.4)

qm (f) = f3f4(f1 + f2)− f1f2(f3 + f4).(2.5)

that we shall denote mU-U. This modified equation still has a family of equlibria:

F̃ = 1; F̃ =
1

|p|2 − µ, µ ≤ 0(2.6)

such that

W [· · · ] qm(f) ≡ 0.

Moreover it has been observed by V. E. Zakharov (cf. [2]) that the function

G(p) = |p|−7/3(2.7)

satisfies:

∀R > 0 :

∫

B(0,R)
Qm(G)(p) dp = −C∗.(2.8)

The particle density G(p) defines a stationary distribution of particles with non zero
flux at the origin for the operator Qm.

3. Our main result.

For none of the two particular solutions that we have considered in the previous
Section, G(x) = x−(3+λ)/2 nor G(p) = |p|−7/3, are the natural quantities of the corre-
sponding equation well defined. For the mU-U equation the total number of particles
contained in a ball of radius R > 0since

∫

B(0,R)
G(p) dp = C

∫ R

0
G(p) |p|2 d|p|

diverges as R→ +∞) while for the coagulation equation it is the total mass contained
in an interval (0, R):

∫ ∞

δ
xG(x) dx

that diverges as δ → 0. We then address the following question: is it possible to find
solutions for which the natural quantities are well defined and not preserved for t > 0 ?

The answer in both cases is yes. In both cases, the results may be roughly described
as follows.Consider an initial data such that

f0(p) ∼ |p|−7/3 |p| → 0, for the Uehling Uhlenbeck equation

f0(x) ∼ x−(3+λ)/2 x→ +∞, for the coagulation equation
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and for which the total number of particles or the total mass respectively, are well
defined. Then there exists local (in time) solutions of the equations for t ∈ (0, T ) for
some finite T > 0, such that:

f(t, p) ∼ λ1(t) |p|−7/3 |p| → 0, for the Uehling Uhlenbeck equation

f(t, x) ∼ λ(t)2 x
−(3+λ)/2 x→ +∞, for the coagulation equation

where λ1 and λ2 are continuous functions bounded from above and from below by two
positive constants on the time interval t ∈ [0, T ], and such that, for all t ∈ [0, T ], the
total number of particles or the total mass respectively are well defined. Since the precise
result in both cases is very similar we only write in detail the Theorem for the Uehling
Uhlenbeck equation. Moreover, since we only consider radially symmetric solutions and
the solutions that we obtain have the same property we state our result in terms of the
Uehling Uhlenbeck equation in radial variables (1.5). We recover the unified presentation
of our two examples in the description of the proofs in Section 4.

Theorem 3.1. (U-U equation in radial coordinates.)

Suppose that:
∣∣∣f0(x)−Ax−7/6

∣∣∣ ≤ B

x7/6−δ , 0 ≤ x ≤ 1,
∣∣∣∣f ′0(x) +

7

6
Ax−13/6

∣∣∣∣ ≤
B

x13/6−δ , 0 ≤ x ≤ 1,

f0 ∈ C(R+) y f0(x) ≤ B
e−Dx

x7/6
, x ≥ 1

where A,B,C,D, δ are positive constants Then, there exists a solution f(t, x) of (1.5),
f ∈ C1,0((0, T )× (0,+∞)), a function λ(t) ∈ C[0, T ]∩C1(0, T ), anda constants L > 0,
T > 0 such that:

(i) 0 ≤ f(x, t) ≤ Le
−Dx

x7/6
, if x > 0, t ∈ (0, T ),

(ii) |f(x, t)− λ(t)x−7/6| ≤ Lx−7/6+δ/2, x ≤ 1, t ∈ (0, T )

(iii) |λ(t)| ≤ L, for all t ∈ (0, T ).

Remark 3.2. If f is the solution described in Theorem 3.1 then for all t ∈ (0, T ) the
total number of particles is well defined:

∫ ∞

0
x f(t, x)

√
x dx < +∞

and, due to the behavior of the solution f as x→ 0, we have
∫

|p|2≥R
Qr(f(t, p) dp = −Cλ3(t) +O(R1/10),

as R→ 0.

Remark 3.3. (The question of uniqueness.) It has been proved by X. Lu in [18] that
for all non negative measure h0 on R+ satisfying:

∫ ∞

0
d
(

(x1/2 + x3/2)h0(x)
)
<∞.(3.1)
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there exists a solution h(t, x) of the equation (1.5) such that, for all time t > 0 h(t) is
a non negative measure, h(t) takes h0 as initial value in some suitable weak sense and
such that, for all t > 0: ∫ ∞

0
d
(

(x1/2 + x3/2)h(t, x)
)
<∞

This solution h also satisfies an entropy inequality and, what is most important to us
here, the conservation of the total number of particles:

d

dt

∫ ∞

0
d
(
x1/2h(t, x)

)
= 0.

Notice that the initial data in Theorem 3.1 satisfy condition (3.1) and are then perfectly
admissible data for the Theorem of Lu. It is an open question to determine if the solution
obtained by Lu’s Theorem and ours are related in some way.

4. Method and main ideas of the Proof.

The proof is based on the linearisation of the equation around the initial data f0 as
follows. We look for solutions of the form:

f(t, x) = λ(t) f0(x) + g(t, x)(4.1)

where λ and g have to be determined. We then write q(f) as follows:

q (f) = q (λ(t) f0 + g) = `2 (λ(t) f0, g)︸ ︷︷ ︸
quadratic in λ(t)f0

+ `1 (λ(t) f0, g)︸ ︷︷ ︸
linear in λ(t)f0︸ ︷︷ ︸

linear in g

+q (λ(t) f0) +R(f0, g)

where R(f0, g) is quadratic in g. Using now that f0(x) ∼ x−7/6 as x→ 0 we use:

`2 (λ(t) f0, g) = λ(t)2 `2 (f0, g) ≈ λ(t)2 `2

(
|p|−7/3, g

)

and that introduces a new term in the remainder R(f0, g). Rescaling the time variable,
the resulting equation may then be written as:

∂g

∂τ
= L(g) +R(f0, g, τ)(4.2)

L(g) =

∫ ∫ ∫

D(x1)
w (x1, x2, x3, x4) `2

(
x−7/6, g

)
dx3 dx4(4.3)

In both problems, the Uheling Uhlenbeck equation and the coagulation equation, one
arrives at the same type of equation (4.2) for t > 0 and x > 0, where L is a linear
integral operator. The equation (4.2) can be solved in a very classical way. In a first
step we study the linear semigroup generated by the operator L (4.3). Then, in a
second step, we prove the existence of a local solution g of (4.2) by means of a fixed
point argument. Moreover the study of the linear semigroup generated by L, i.e. the
study of the solutions:

∂g

∂t
= L(g), t > 0, x > 0(4.4)

g(0, x) = δx0(4.5)

for any fixed x0 > 0 may be performed with essentially the same methods and may then
be presented in a unified way. The second step - study of the nonlinear problem - is
more technical and is rather different in both cases due to the different properties of the
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respective linear semigroups. I will then mainly describe here our study of the linear
semigroups and will only add a brief remark on the non linear problems.

Remark 4.1. The proof of existence of a solution g to (4.2) is based on a fixed point
and the semigroup generated by L. One is led, as usual, to prove that the nonlinear
term R(f0, g, τ) is small in some suitable norm for t small. The operator L is then a
good linearisation at small times of the Uehling Uhlenbeck equation around f0 under the
assumptions of Theorem 3.1. Notice that L is not the linearised of the Uehling Uhlenbeck
equation around x−7/6, but that of the modified equation (2.4), (2.5).

4.1. The linear equation. We first perform a change of variables X = log x,
w(x1, · · · , x4) = ω(X1, · · · , X4) and G(t,X) = g(t, x), where now X ∈ R, and take
Fourier transform in X defining:

Ĝ(t, ξ =
1√
2π

∫

R
e−iX,ξ G(t,X) dX.

After a lengthly but explicit calculation the equation (4.4) is transformed in:

∂tĜ(t, ξ) = Ĝ (t, ξ + i h) Φ (ξ + i h)(4.6)

Ĝ(0, ξ) = 1(4.7)

for some h ∈ R and some meromorphic function Φ from C to C, all of them explicit and
determined by the kernel ω. In our two examples:

• h =
λ− 1

2
; Φ(ξ) = − 2

√
π Γ(iξ + 1 + λ

2 )

Γ(iξ + λ+1
2 )

(Coagulation equation)

• Φ(ξ) = −a+
∞∑

j=0

A1(j)

(1− 6iξ + 12j)
+
∞∑

j=0

A2(j)

(1− 3iξ + 3j)
+
∞∑

j=0

A3(j)

(3 + 2iξ + 2j)

+
∞∑

j=0

A4(j)

(10 + 3iξ + 6j)
; h = −1

3
(Uehling Uhlenbeck equation)

Moreover, the behavior of the kernel ω as X → ±∞ imposes some decay conditions on

G(t,X) as X → ±∞ and therefore the condition that Ĝ(t, ·) must be analytic in some
strip

S = {ξ; ξ = u+ iv, A1 < v < A2, u ∈ R}(4.8)

for two explicitly known real constants A1 < A2.

We are then lead to look for a solution Ĝ of (4.7) analytic in the domain S defined
in (4.8). This roblem is solved in two steps by using the Laplace transform in time.

Lemma 4.2. Suppose that V is an analytic function in the strip S satisfying:
∫

Im(y)=β0

∣∣∣∣
1

V(y)

∣∣∣∣ e−
π
2h
|y|√1 + |y||dy| <∞(4.9)

for some β0 ∈ (A1, A2) and

V (ξ) = −V (ξ + i h) Φ (ξ + i h)(4.10)

for Imξ ∈ (A1, A2). Then, the function

Ĝ(t, ξ) =
i√
2πh

∫

Imy=β0

V(ξ)

V(y)
t−

y−ξ
h

i Γ

(
y − ξ
h

i

)
dy(4.11)

A1 < β0 < A2(4.12)

Exp. no XX— Non zero flux solutions of kinetic equations
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for Imξ > β0 may be extended analytically to S and solves (4.6), (4.7) for Imξ ∈
(A1, A2).

Proof. The proof follows by direct complex variable computation. �

A heuristic explanation for the formula (4.11) can be given using Laplace transform.

Suppose that we define the Laplace transform of Ĝ (t, ξ) in t as:

G̃ (z, ξ) =

∫ ∞

0
Ĝ (t, ξ) e−ztdt

Then, (4.6), (4.7) become:

(4.13) zG̃ (z, ξ) = G̃ (t, ξ + hi) Φ (ξ + hi) +
1√
2π

The solution of this equation can be formally reduced to (4.10) by means of the trans-
formation:

(4.14) G̃ (z, ξ) = exp

(
− i
h

log (−z) ξ
)
V (ξ)H (z, ξ) .

If V satisfies (4.10), such transformation brings (4.13) to:

(4.15) H (z, ξ)−H (z, ξ + hi) =
1√
2π

e
i
h

log(−z)ξ

zV (ξ)

Equation (4.15) can be transformed into a Riemann-Hilbert problem by means of the
following conformal mapping:

(4.16) H (z, ξ) = h (z, ζ) , ζ = e
2π
h

(ξ−β0i)

where, for the sake of simplicity we will write, with some slight abuse of notation

V (ξ) = V (ζ) .

Then (4.15) becomes:

(4.17) h (z, ζ + i0)− h (z, ζ − i0) =
e

2π
h
β0α(z)

√
2π

ζα(z)

zV (ζ)
, ζ ∈ R+

with h analytic in C \ R+ and:

α (z) =
1

2πi
arg (−z)

It is well known that the solution of Riemann-Hilbert problems can be obtained using
Wiener Hopf methods (cf. [19], [20]). However, in this particular case, assuming that
ζα(z)

V(ζ) satisfies suitable boundedness estimates for small and large ζ, we can solve (4.17)

just using Cauchy’s formula to obtain:

h (z, ζ) =
1

2πi

1√
2π

e
2π
h
β0α(z)

z

∫ ∞

0

sα(z)

V (s)

ds

(s− ζ)

and, using (4.16):

(4.18) H (z, ξ) =
1

2πi

1√
2π

1

z

∫ ∞

−∞

e
2πα(z)
h

y

V (y)

dy

1− e 2π
h

(ξ−y)
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It then follows from (4.14) that:

G̃ (z, ξ) =
1

2πi

1√
2π

1

z
V (ξ)

∫ ∞

−∞

e
2πα(z)
h

(y−ξ)

V (y)

dy

1− e 2π
h

(ξ−y)
(4.19)

and inverting the Laplace transform we finally obtain (4.11).
On the other hand, equation (4.10) has infinitely many solutions. Notice indeed that

given a solution Vpart another is obtained as:

V(ξ) = Vpart(ξ) p(ξ)
where p(ξ) = p(ξ + h). Examples of such function p are e

2π `
h with ` ∈ N and any linear

combination of them.
Given such a non uniqueness a natural and essential question is then how to chose

one of them. We may state several sufficient conditions that would ensure that Ĝ is

the Fourier transform of a tempered distribution. First we want the function Ĝ to be
defined. This is guaranteed by the condition (4.9) above. However, this condition is

not sufficient to prove that Ĝ(t, ξ) is globally bounded with respect to ξ. The difficulty
comes from the fact that, if the behaviors of V(ξ) are too disparate as Re(ξ) tends to

plus or minus infinity, the quotient V(ξ)
V(ξ+Y ) may be strongly increasing in some regions

of the integral in (4.11). A sufficient condition to avoid this difficulty is to have:

|V(ξ)| ≈ eB±|ξ|, |B±| ≤
2π

h
(4.20)

as Re(ξ)→ ±∞. The decay rate of the Gamma function in (4.11) may then control the

possible growth of the quotient V(ξ)
V(ξ+Y ) uniformly on ξ.

A particular solution of (4.10) can be easily obtained using Cauchy’s formula. To this
end we take the logarithm of both sides of (4.10) to obtain:

(4.21) log (V (ξ)) = log (V (ξ + h i)) + log (−Φ (ξ + h i))

or equivalently

(4.22) log (V (ξ − h i)) = log (V (ξ)) + log (−Φ (ξ)) .

Let us take any β such that Φ (ξ) has no zeros nor poles along the line Im (ξ) = β. We
define:

ψ (ζ) = log (V (ξ)) , ζ = e
2π
h

(ξ−β1i) , Q (ζ) = log (−Φ (ξ))

Equation (4.22) then becomes

(4.23) ψ (ζ + i0) = ψ (ζ − i0) +Q (ζ − i0) , ζ ∈ R+

with ψ analytic in C \ R+. Taking into account that |Q (ζ)| ≤ C (1 + |log (ζ)|) we can
obtain a particular solution of (4.23) as:

ψ (ζ) =
1

2πi

∫

R+

Q (s)

[
1

s− ζ −
1

s+ 1

]
ds

where the term 1/(s + 1) has been added to the classical Cauchy integral in order to
ensure the convergence of the integral. Then, returning to the variable ξ we obtain:

Vpart(ξ) = exp

[
− i
h

∫

Imy=β
ln (Φ(y))

(
1

1− e 2π
h

(ξ−y)
− 1

1−Ae− 2π
h
y

)
dy

]
(4.24)

where β is chosen in such a way that Φ(·) has no zeros nor pole on Imξ = β and A ∈ C is

an auxiliary constant chosen such that 1−Ae− 2π
h
y 6= 0 on Imy = β. This formula only
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defines a unique function if the value of β and the argument of the function ln (−Φ(η))
are prescribed. These choices depend in an essential way on the particular function Φ
and very particularly on the location of its zeros and poles. Once that choice has been

made the formulas (4.11) and (4.20) yield an explicit solution G̃(t, ξ) of (4.6), (4.7).
Inverting the Fourier transform, we obtain a solution g(t, x, x0) of (4.4), (4.5) that has
in both cases the self similar form:

g(t, x, x0) =
1

x0
g

(
t xh0 ,

x

x0
, 1

)
.

It is then possible to obtain the asymptotic behaviors of the function g(t, x, 1) in the
different domains of the variables x and t. We state the Theorems corresponding to our
two different examples. First for the Uehling Uhlenbeck equation:

Theorem 4.3. (The Uehling Uhlenbeck equation [9]) Let g be the solution of the equation
(4.4) corresponding to the Uehling Uhlenbeck equation that has been previously obtained.
For x ∈ (0, 2) the function g(t, x, 1) can be written, for all t > 0 as:

g(t, x, 1) = e−a tδ(x− 1) + σ(t)x−7/6 +R1(t, x) +R2(t, x),(4.25)

where σ ∈ C[0,+∞) satisfies:

σ(t) =

{
A t4 +O(t4+ε) as t→ 0+,

O(t−(3v0−5/2)) as t→ +∞
R1 satisfies,

R1(t, x) ≡ 0 for |x− 1| ≥ 1

2
,

|R1(t, x)| ≤ C e−(a−ε)t

|x− 1|5/6 for |x− 1| ≤ 1

2
,

and R2 satisfies:

R2(t, x) ≤





C

t5/2+ε

(
t3

x

)b̃
for 0 ≤ t ≤ 1

C

t3v0−ε

(
t3

x

)b̃
for t > 1.

On the other hand, for x > 2,

F (t, x, 1) ≤





C

t
9
2

+ε

(
t3

x

) 11
6

for 0 ≤ t ≤ 1

C

t1+3v0−ε

(
t3

x

) 11
6

for t > 1,

In these formulae, A is an explicit numerical constant, ε > 0 is an arbitrarily small
number, b̃ is an arbitrary number in the interval (1, 7/6), and v0 ≈ 1.84 . The constant

C depends on ε and b̃ but is independent on t.

And for the coagulation equation.

Theorem 4.4. (The coagulation equation [11]) Let g be the solution of the equation
(4.4) corresponding to the coagulation equation that has been previously obtained. Then,
there exists positive constants δ and ε1 only depending on λ, such that for any 0 < ε < ε1
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the following statements hold.
For all t ≥ 1:

g(t, x, 1) = t
2

λ−1ϕ1(σ) + ϕ2(t, σ)

where σ is the self similar variable:

σ = t
2

λ−1 x,

and the functions ϕ1 and ϕ2 satisfy the following estimates:

ϕ1(σ) =





a1 σ
− 3

2 +Oε
(
σ−

4−λ
2

+ε
)

for 0 ≤ σ < 1

a2 σ
− 3+λ

2 +Oε
(
σ−(1+λ+ε)

)
for σ > 1

where a1 and a2 are two explicit constants,

ϕ2(t, σ) =





b1(t)σ−
3
2 +O

(
t

2
λ−1
−δ σ−

3
2

+δ
)

for 0 ≤ σ < 1

b2(t)σ−
3+λ

2 +O
(
t

2
λ−1
−δ σ−

3+λ
2
−δ
)

for σ > 1

where b1 and b2 are two continuous functions such that |b1(t)|+ |b2(t)| ≤ C t 2
λ−1
−δ.

For all 0 < t < 1:

g(t, x, 1) =





t x−
3
2 + b3(t)x−

3
2 +O

(
t x−

3
2

+δ
)

for 0 ≤ x ≤ 1
2

a3 t x
− 3+λ

2 + b4(t)x−
3+λ

2 +O
(
t x−

3+λ
2
−δ
)

for x ≥ 3
2 ,

Oε
(

t1−2ε

|x−1| 32−ε

)
for t2 < |x− 1| < 1

2

where a3 is an explicit numerical constant and b3 and b4 are continuous functions such
that |b3 (t)|+ |b4 (t)| ≤ Ct1+δ.
Finally:

lim
t→0

t2g(t, 1 + t2 χ, 1) = Ψ (χ) uniformly on compact subsets of R(4.26)

where the function Ψ is given by:

(4.27) Ψ(χ) =





π
χ3/2 e

−π
χ , for all χ ≥ 0,

0 for all χ < 0.

Remark 4.5. The two linear equations behave very differently with respect to the initial
Dirac measure. As it is shown by (4.25), in the Uehling Uhlenbeck equation the Dirac
measure is present for all time although it is exponentially damped. On the contrary, the
coagulation equation regularizes instantaneously the Dirac measure by means of a self
similar process described in (4.26), (4.27).
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4.2. The non linear equation. With the two Theorems 4.3 and 4.4 we can build the
linear semigroup G generated by the linear operator L. We may then look for mild
solutions of the nonlinear equation (4.2), (4.3), i.e. solutions of the integral equation:

g(τ, x) = G(τ)g0(x) +

∫ τ

0
G(τ − s)R(f0, g(s); s) ds(4.28)

This nonlinear equations is now solved using a fixed point argument. As it is well
known this relies very much on the precise properties of the linear semigroup G generated
by the operator L. As we have seen, these properties are different for the Uehling Uh-
lenbeck equation and the coagulation equation, the details of the fixed point arguments
have then to be different.

The case of the Uehling Uhlenbeck equation turns out to be simpler. It is possible in
that case to prove that the remainder term

∫
0 τG(τ − s)R(f0, g, s)ds is small in some

weighted L∞ norm when τ is sufficiently small.
The problem is a little more involved for the coagulation equation and the reason is

the following. In order to solve the non linear equation we want to look for solutions
f(t, x) that are small perturbations of the initial data f0. That leads to an operator L
that is the linearization of the non linear operator (Q or C), around f0. The study that
we must perform of the linear operator L is delicate because the estimates that we need
will only appear if we are able to take into account the cancelations that take place in the
integral defining the operator. To this end the operator L is treated as a perturbation
of the operator L that has been introduced and studied above. An added difficulty
in the case of the coagulation operator is that the operator L as regularizing effects
that are only present “at infinity” in the operator L (the region where f0(x) behaves

like x
−(3+λ)/2
0 . The passage from L to L may then be seen as a singular perturbation

problem. The fixed point argument requires in that case a more involved type of norms
measuring the regularising effect of the operator L. Although these norms may seem
rather involved it may be useful to give them here.

N2;σ(f ; t0, R) =

(
R
λ−1

2
+2σ−1

∫ min(t0+R−(λ−1)/2,T )

t0

||Dσ
xf(t)||2L2(R/2,2R)dt

)1/2

, σ ≥ 0

M2;σ(f ; R) =

(
R2σ−1

∫ T

0
||Dσ

xf(t)||2L2(R/2,2R)dt

)1/2

, σ ≥ 0

N∞(f ; t0, R) =

(
R
λ−1

2

∫ min(t0+R−(λ−1)/2,T )

t0

||f(t)||2L∞(R/2,2R)dt

)1/2

M∞(f ; R) =

(∫ T

0
||f(t)||2L∞(R/2,2R)dt

)1/2

Then, for any σ > 0 we define the following norms:

||f ||Y σq,p(T ) = sup
0<R≤1

RqM2; 0(f ;R) + sup
0<R≤1

RqM2;σ(f ;R)+

+ sup
0≤t0≤T

sup
R≥1

RpN2;0(f ; t0, R) + sup
0≤t0≤T

sup
R≥1

RpN2;σ(f ; t0, R)

||f ||Xq,p(T ) = sup
0<R≤1

RqM∞(f ;R)) + sup
0≤t0≤T

sup
R≥1

RpN∞(f ; t0, R)
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|||f |||q,p = sup
0≤x≤1

{xq |f (x)|}+ sup
x>1
{xp |f (x)|}

|||f |||σ = sup
0≤t≤T

|||f ||| 3
2
, 3+λ

2
+ ‖f‖Y σ

3
2 ,

3+λ
2

(T )

and the following spaces:

Y σ
q,p (T ) =

{
f : ||f ||Y σq,p(T ) <∞

}
,

Xσ
q,p (T ) =

{
f : ||f ||Xσ

q,p(T ) <∞
}
,

ET ;σ = {f : | |||f |||σ <∞}
The suitable choice of σ for our purpose is σ ∈

(
1
2 , 1
)
. The Sobolev embeddings

implies then:
Y σ
q,p (T ) ⊂ Xq,p (T ) .

We may then solve the problem (1.1)-(1.3) using a functional space that measures
the regularizing effects of the coagulation equation as x → ∞. Let η ∈ C∞ (R+) a
cutoff function satisfying η(x) = 1 for x ∈

(
1
4 , 3
)
, η(x) = 0 for x 6∈

(
1
8 , 4
)
. Given

f ∈ C (R+) , t0 ∈ [0, T ], R ≥ 1 we define:

FR,t0(θ,X) = η(RX)f
(
t0 + θR−(λ−1)/2, RX

)

and:

[f ]
σ; 1

2
p = sup

R≥1
sup

0≤t0≤T
Rp
(∫ min(t0+R−(λ−1)/2,T )

t0

∫

R
|F̂R,t0(θ, k)|2

(
1 + |k|2σ

)

(1 + min{|k|, R}) dk dθ
)1/2

‖f‖
Zσ; 1

2
p (T )

= ‖f‖L2((0,T );Hσ
x (0,2)) + [f ]

σ; 1
2

p + sup
0≤t≤T

|||f ||| 3
2
,p + ||f ||Y σ3

2 ,p
(T )

Zσ; 1
2

p (T ) =

{
f : | ‖f‖

Zσ; 1
2

p (T )
<∞

}

These spaces are well adapted to the study of the non linear coagulation operator C as
show the following result whose proof may be found in [12]:

Lemma 4.6. Let C be the coagulation operator defined in (1.13). Then, for any σ ∈(
1
2 , 1
)
, and any δ̄ > 0 there exists a positive constant c = c

(
σ, δ̄
)

such that for any

h ∈ Zσ; 1
2

( 3+λ
2

+δ̄)
(T ) :

‖C [h]‖Y σ3
2 ,(2+δ̄)

(T ) ≤ c ‖h‖2Zσ; 1
2

( 3+λ
2 +δ̄)

(T )
.

5. The phenomena of B-E condensation and gelation.

The solutions with non zero fluxes are related with two interesting phenomena. As
for the first one, it is shown by the experiments that below a critical temperature a gas
of bosons undergoes the Bose Einstein (B-E) condensation: at finite time, a positive
fraction of the density of particles concentrate at the lowest energy level giving rise to
what is called a Bose Einstein condensate. At the same time takes place a loss of the total
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number of particles in the gas. The presence of a nonzero flux of particles towards the
particles of zero momentum makes tempting to think that the solutions constructed in
this paper could provide some information about the dynamic growth of Bose-Einstein
condensates. However, this does not seem to be the case since the zero momentum
particles would not interact at all with the particles outside the condensate and, a more
careful analysis rather yields models (cf. [1, 26]) where the condensate interacts with
the particles that are not in the condensate. A recent and detailed description of the
mathematical questions related with this phenomena and several enlightening results
may be found in [23].

Our second example considers reactive polymers in liquid sol, whose density function is
described by the coagulation equation. If the reaction rate is strong enough, the gelation
phenomena takes place: macroscopic branched chain molecules appear containing part
of the mass previously in the polymer. Simultaneously, the total mass of polymers
still in the sol phase decreases. The sudden transformation of the reaction mixture
from a viscous liquid to an elastic material of infinite viscosity, which transformation
characterizes the gel point, has been attributed to the formation of infinite network
structures, i.e., molecular structures which assume macroscopic size and which extend
throughout the medium.

This phenomena has been related with the following property of the coagulation
equation (1.12), (1.13) with kernel W (x, y) = xαyβ + xβyα that was first proved by I.
Jeon in [15] and later by different methods in [8]: if λ = α + β ∈ (1, 2] then for all
solution f(t) with non negative initial data fin of finite mass there exists T > 0 and
C > 0 such that:

∫ ∞

0
x f(t, x) dx =

∫ ∞

0
x fin(x) dx ∀0 < t < T

∫ ∞

0
x f(t, x) dx ≤ C

(1 + t)1/λ
, ∀t > 0.

These two facts show that the total mass of the particles whose density function is f
decreases after some finite time T ∗. The non zero flux solutions whose existence we
have presented above may then be seen as possible descriptions of the density function
of polymers after the gelation phenomena has happened at t = T ∗.
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