Une approche alternative de l’évolution adiabatique des résonances de forme 1D .
Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2009-2010), Exposé no. 13, 9 p.
Nier, Francis 1

1 IRMAR, UMR - CNRS 6625 Université Rennes 1 Campus de Beaulieu 35042 Rennes Cedex, France & CMAP, UMR - CNRS 7641 École Polytechnique 91128 Palaiseau Cedex
@article{SEDP_2009-2010____A13_0,
     author = {Nier, Francis},
     title = {Une approche alternative de l{\textquoteright}\'evolution adiabatique des r\'esonances de forme {1D~.}},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"},
     note = {talk:13},
     pages = {1--9},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2009-2010},
     language = {fr},
     url = {http://www.numdam.org/item/SEDP_2009-2010____A13_0/}
}
TY  - JOUR
AU  - Nier, Francis
TI  - Une approche alternative de l’évolution adiabatique des résonances de forme 1D .
JO  - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
N1  - talk:13
PY  - 2009-2010
SP  - 1
EP  - 9
PB  - Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://www.numdam.org/item/SEDP_2009-2010____A13_0/
LA  - fr
ID  - SEDP_2009-2010____A13_0
ER  - 
%0 Journal Article
%A Nier, Francis
%T Une approche alternative de l’évolution adiabatique des résonances de forme 1D .
%J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
%Z talk:13
%D 2009-2010
%P 1-9
%I Centre de mathématiques Laurent Schwartz, École polytechnique
%U http://www.numdam.org/item/SEDP_2009-2010____A13_0/
%G fr
%F SEDP_2009-2010____A13_0
Nier, Francis. Une approche alternative de l’évolution adiabatique des résonances de forme 1D .. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2009-2010), Exposé no. 13, 9 p. http://www.numdam.org/item/SEDP_2009-2010____A13_0/

[1] S. Albeverio et K. Pankrashkin. A remark on Krein’s resolvent formula and boundary conditions. J. Phys. A, 38(22) :4859–4864, 2005. | MR | Zbl

[2] W.K. Abou Salem et J. Fröhlich. Adiabatic theorems for quantum resonances. Comm. Math. Phys., 273(3) :651–675, 2007. | MR | Zbl

[3] J. Aguilar et J. M. Combes. A class of analytic perturbations for one-body Schrödinger Hamiltonians. Comm. Math. Phys., 22 :269–279, 1971. | MR | Zbl

[4] J. E. Avron, R. Seiler et L. G. Yaffe. Adiabatic theorems and applications to the quantum Hall effect. Comm. Math. Phys., 110(1) :33–49, 1987. | MR | Zbl

[5] E. Balslev et J. M. Combes. Spectral properties of many-body Schrödinger operators with dilatation-analytic interactions. Comm. Math. Phys., 22 :280–294, 1971. | MR | Zbl

[6] N. Ben Abdallah, P. Degond, and P.A. Markowich. On a one-dimensional Schrödinger-Poisson scattering model. Z. Angew. Math. Phys. | Zbl

[7] N. Ben Abdallah. On a multidimensional Schrödinger-Poisson scattering model for semiconductors. J. Math. Phys., 41(7) :4241–4261, 2000. | MR | Zbl

[8] V. Bonnaillie-Noël, A. Faraj et F. Nier. Simulation of resonant tunneling heterostructures : numerical comparison of a complete Schrödinger-Poisson system and a reduced nonlinear model. J. Comput. Elec., 8(1) :11–18, 2009.

[9] V. Bonnaillie-Noël, F. Nier et Y. Patel. Computing the steady states for an asymptotic model of quantum transport in resonant heterostructures. J. Comput. Phys., 219(2) :644–670, 2006. | MR | Zbl

[10] V. Bonnaillie-Noël, F. Nier et Y. Patel. Far from equilibrium steady states of 1D-Schrödinger-Poisson systems with quantum wells. I. Ann. Inst. H. Poincaré Anal. Non Linéaire, 25(5) :937–968, 2008. | Numdam | MR | Zbl

[11] V. Bonnaillie-Noël, F. Nier et Y. Patel. Far from equilibrium steady states of 1D-Schrödinger-Poisson systems with quantum wells. II. J. Math. Soc. Japan, 61(1) :65–106, 2009. | MR | Zbl

[BuLa] M. Büttiker, Y. Imry, R. Landauer et S. Pinhas. Generalized manychannel conductance formula with application to small rings. Phys. Rev. B 31 (1985) pp. 6207–6215.

[13] H. L. Cycon, R. G. Froese, W. Kirsch et B. Simon. Schrödinger operators with application to quantum mechanics and global geometry. Texts and Monographs in Physics. Springer-Verlag, Berlin, study edition, 1987. | MR | Zbl

[14] A. Faraj, A. Mantile et F. Nier. Adiabatic evolution of 1D shape resonances : an artificial interface conditions approach. Prépublication de l’IRMAR janvier 2010, hal-00448868. | MR

[15] B. Helffer et J. Sjöstrand. Résonances en limite semi-classique. Number 24-25 in Mém. Soc. Math. France (N.S.). 1986. | Numdam | MR | Zbl

[16] P. D. Hislop et I. M. Sigal. Semiclassical theory of shape resonances in quantum mechanics, volume 78(399) of Mem. Amer. Math. Soc. 1989. | MR | Zbl

[17] G. Jona-Lasinio, C. Presilla et J. Sjöstrand. On Schrödinger equations with concentrated nonlinearities. Ann. Physics, 240(1) :1–21, 1995. | MR | Zbl

[18] A. Joye et C.E. Pfister. Exponential estimates in adiabatic quantum evolution. In XIIth International Congress of Mathematical Physics (ICMP ’97) (Brisbane), pages 309–315. Int. Press, Cambridge, MA, 1999. | MR

[19] A. Joye. General adiabatic evolution with a gap condition. Comm. Math. Phys., 275(1) :139–162, 2007. | MR | Zbl

[20] T. Kato. Perturbation theory for linear operators. Second edition. Grundlehren der Mathematischen Wissenschaften, Band 132. Springer-Verlag (1976). | MR | Zbl

[21] M. Klein et J. Rama. Almost exponential decay of quantum resonance states and Paley-Wiener type estimates in Gevrey spaces. preprint, mp-arc 09-64, 2009. | MR | Zbl

[22] M. Klein, J. Rama et R. Wüst. Time evolution of quantum resonance states. Asymptot. Anal., 51(1) :1–16, 2007. | MR | Zbl

[Lan] R. Landauer. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Develop. 1 (1957) pp. 223–231. | MR

[24] G. Nenciu. Linear adiabatic theory. Exponential estimates. Comm. Math. Phys., 152(3) :479–496, 1993. | MR | Zbl

[25] G. Nenciu et G. Rasche. On the adiabatic theorem for nonselfadjoint Hamiltonians. J. Phys. A, 25(21) :5741–5751, 1992. | MR

[26] F. Nier. The dynamics of some quantum open systems with short-range nonlinearities. Nonlinearity, 11(4) :1127–1172, 1998. | MR | Zbl

[27] F. Nier. Accurate WKB approximation for a 1D problem with low regularity. Serdica Math. J., 34(1) :113–126, 2008. | MR | Zbl

[28] K. Pankrashkin. Resolvents of self-adjoint extensions with mixed boundary conditions. Rep. Math. Phys., 58(2) :207–221, 2006. | MR | Zbl

[29] G. Perelman. Evolution of adiabatically perturbed resonant states. Asymptot. Anal., 22(3-4) :177–203, 2000. | MR | Zbl

[30] C. Presilla et J. Sjöstrand. Transport properties in resonant tunneling heterostructures. J. Math. Phys., 37(10) :4816–4844, 1996. | MR | Zbl

[31] B. Simon. Resonances and complex scaling : a rigorous overview. Int.J. Quantum Chem., 14(4) :529–542, 1978.

[32] B. Simon. The definition of molecular resonance curves by the method of exterior complex scaling. Phys. Lett., 71A(2,3) :211–214, 1979.

[33] J. Sjöstrand. Projecteurs adiabatiques du point de vue pseudodifférentiel. C. R. Acad. Sci. Paris Sér. I Math., 317(2) :217–220, 1993. | MR | Zbl

[34] J. Sjöstrand et M. Zworski. Complex scaling and the distribution of scattering poles. J. Amer. Math. Soc., 4(4) :729–769, 1991. | MR | Zbl

[35] E. Skibsted. Truncated Gamow functions, α-decay and the exponential law. Comm. Math. Phys., 104(4) :591–604, 1986. | MR | Zbl

[36] E. Skibsted. Truncated Gamow functions and the exponential decay law. Ann. Inst. H. Poincaré Phys. Théor., 46(2) :131–153, 1987. | Numdam | MR | Zbl

[37] E. Skibsted. On the evolution of resonance states. J. Math. Anal. Appl., 141(1) :27–48, 1989. | MR | Zbl

[38] A. Soffer et M. I. Weinstein. Time dependent resonance theory. Geom. Funct. Anal., 8(6) :1086–1128, 1998. | MR | Zbl