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STABLE BLOW UP DYNAMICS FOR THE CRITICAL
CO-ROTATIONAL WAVE MAPS AND EQUIVARIANT

YANG-MILLS PROBLEMS

PIERRE RAPHAËL AND IGOR RODNIANSKI

Abstract. This note summarizes the results obtained in [30]. We exhibit stable
finite time blow up regimes for the energy critical co-rotational Wave Map with
the S2 target in all homotopy classes and for the equivariant critical SO(4) Yang-
Mills problem. We derive sharp asymptotics on the dynamics at blow up time and
prove quantization of the energy focused at the singularity.

1. Introduction

We summarize the results obtained in [30] where we study the dynamics of two
critical problems: the (2 + 1)-dimensional Wave Map and the (4 + 1)-dimensional
Yang-Mills equations. These problems admit non trivial static solutions (topological
solitons) which have been extensively studied in the literature both from the math-
ematical and physical point of view, see e.g. [2],[3],[11],[42]. The static solutions for
the (WM) are harmonic maps from R2 into S2 ⊂ R3 satisfying the equation

−∆Φ = Φ|∇Φ|2

They are explicit solutions of the O(3) nonlinear σ-model of isotropic plane ferro-
magnets. For the (YM) equations a particularly interesting class of static solutions
is formed by (anti)self-dual instantons, satisfying the equations

F = ± ∗ F

for the curvature F of an so(4)-valued connection over R4. The 4-dimensional eu-
clidean Yang-Mills theory forms a basis of the Standard Model of particle physics
and its special static solutions played an important role as pseudoparticle models in
Quantum Field Theory.

The geometry of the moduli space of static solutions has been a subject of a
thorough investigation, see e.g. [41],[1],[11]. In particular, the moduli spaces are
incomplete due to the scale invariance property of both problems. This gave rise
to a plausible scenario of singularity formation in the corresponding time dependent
equation which has been studied heuristically, numerically and very recently from a
mathematical point of view, [5],[12],[18],[19],[31],[21] and references therein.

The focus of this paper is the investigation of special classes of solutions to the
critical (2+1)-dimensional (WM) and the critical (4+1)-dimensional (YM) describ-
ing a stable (in a fixed co-rotational class) and universal regime in which an open
set of initial data leads to a finite time formation of singularities.

The Wave Map problem for a map Φ : R2+1 → S2 ⊂ R3 is described by a nonlinear
hyperbolic evolution equation

∂2
t Φ−∆Φ = Φ

(
|∇Φ|2 − |∂tΦ|2

)
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with initial data Φ0 : R2 → S2 and ∂tΦ|t=0 = Φ1 : R2 → TΦ0S2. We will study
the problem under an additional assumption of co-rotational symmetry, which can
be described as follows. Parametrizing the target sphere with the Euler angles Φ =
(Θ, u) we assume that the solution has a special form

Θ(t, r, θ) = kθ, u(t, r, θ) = u(t, r)

with an integer constant k ≥ 1 – homotopy index of the map Φ(t, ·) : R2 → S2. Under
such symmetry assumption the full wave map system reduces to the one dimensional
semilinear wave equation:

∂2
t u− ∂2

ru− ∂ru

r
+ k2 sin(2u)

2r2
= 0, k ≥ 1, (t, r) ∈ R× R+, k ∈ N∗. (1.1)

Similarly, the equivariant reduction, given by the ansatz,

Aij
α = (δi

αxj − δj
αxi)

1− u(t, r)
r2

,

of the (4 + 1)-dimensional Yang-Mills system

Fαβ = ∂αAβ − ∂βAα + [Aα, Aβ ],

∂βFαβ + [Aβ, Fαβ ] = 0, α, β = 0, ..., 3

for the so(4)-valued gauge potential Aα and curvature Fαβ , leads in the semilinear
wave equation:

∂2
t u− ∂2

ru− ∂ru

r
− 2u(1− u2)

r2
= 0, (t, r) ∈ R× R+. (1.2)

The problems (1.1) and (1.2) can be unified by an equation of the form{
∂2

t u− ∂2
ru− ∂ru

r + k2 f(u)
r2 = 0,

u|t=0 = u0, (∂tu)|t=0 = v0
with f = gg′ (1.3)

and

g(u) =
{

sin(u), k ∈ N∗ for (WM)
1
2(1− u2), k = 2 for (Y M).

(1.3) admits a conserved energy quantity

E(u, ∂tu) =
∫

R2

(
(∂tu)2 + |∂ru|2 + k2 g2(u)

r2

)
which is left invariant by the scaling symmetry

uλ(t, r) = u(
t

λ
,
r

λ
), λ > 0.

The minimizers of the energy functional can be explicitly obtained as

Q(r) = 2 tan−1(rk) for (WM), Q(r) =
1− r2

1 + r2
for (Y M), (1.4)

and their rescalings which constitute the moduli space of stationary solutions in the
given corotational homotopy class.

A sufficient condition for the global existence of solutions to (1.3) was established
in the pioneering works by Christodoulou-Tahvildar-Zadeh [8], Shatah-Tahvildar-
Zadeh [33], Struwe [36]. It can be described as folllows: for smooth initial data
(u0, v0) with E(u0, v0) < E(Q), the corresponding solution to (1.3) is global in time
and decays to zero, see also [10]. More precisely, it was shown that if a singularity
is formed at time T < +∞, then energy must concentrate at r = 0 and t = T . This
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concentration must happen strictly inside the backward light cone from (T, 0), that
is if the scale of concentration is λ(t), then

λ(t)
T − t

→ 0 as t → T. (1.5)

Note that the case λ(t) = T − t would correspond to self-similar blow up which is
therefore ruled out. Finally, a universal blow up profile may be extracted in rescaled
variables, at least on a sequence of times:

u(tn, λ(tn)r) → Q in H1
loc as n → +∞. (1.6)

These results hold for more general targets for (WM) with Q being a non trivial
harmonic map. In particular, this implies the global existence and propagation of
regularity for the corotational (WM) problem with targets admitting no non trivial
harmonic map from R2. Very recently, in a series of works [38],[39],[34],[35],[17],
this result has been remarkably extended to the full (WM) problem without the
assumpion of corotational symmetry, hence completing the program developed in
[14],[13],[40],[37],[16].

These works leave open the question of existence and description of singularity
formation in the presence of non trivial harmonic maps, or the instanton for the
(YM). This long standing question has first been addressed through some numerical
and heuristic works in [4], [5], [12]. Côte [9] has shown instability of Q for the k = 1
(WM) and (YM). A rigorous evidence of singularity formation has been recently
given via two different approaches. In [31], Rodnianski and Sterbenz study the
(WM) system for a large homotopy number k ≥ 4 and prove the existence of stable
finite time blow up dynamics. These solutions behave near blow up time according
to the decomposition

u(t, r) = (Q + ε)(t,
r

λ(t)
) with ‖ε, ∂tε‖Ḣ1×L2 � 1 (1.7)

with a lower bound on the concentration:

λ(t) → 0 as t → T with λ(t) ≥ T − t

|log(T − t)|
1
4

. (1.8)

In [18], [19], Krieger, Schlag and Tataru consider respectively the (WM) system for
k = 1 and the (YM) equation and exhibit finite time blow up solutions which satisfy
(1.7) with

λ(t) =
{

(T − t)ν for (WM) with k = 1,
(T − t)|log(T − t)|−ν for (YM) (1.9)

for any chosen ν > 3
2 . This continuum of blow up solutions are believed to be

non-generic.

2. Statement of the result

The following theorem gives a complete description of a stable singularity for-
mation for the (WM) for all homotopy classes and the (YM) in the presence of
corotational/equivariant symmetry near the harmonic map/instanton, and is the
main result of [30].

Theorem 2.1 (Stable blow up dynamics of co-rotational Wave Maps and Yang-Mills).
Let k ≥ 1. Let H2

a denote the affine Sobolev space (2.7).There exists a set O of initial
data which is open in H2

a and a universal constant ck > 0 such that the following
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holds true. For all (u0, v0) ∈ O, the corresponding solution to (1.3) blows up in finite
time 0 < T = T (u0, v0) < +∞ according to the following universal scenario:
(i) Sharp description of the blow up speed: There exists λ(t) ∈ C1([0, T ), R∗+) such
that:

u(t, λ(t)y) → Q in H1
r,loc as t → T (2.1)

with the following asymptotics:

λ(t) = ck(1 + o(1))
T − t

|log(T − t)|
1

2k−2

as t → T for k ≥ 2, (2.2)

λ(t) = (T − t)e−
√
|log(T−t)|+O(1) as t → T for k = 1. (2.3)

Moreover,

b(t) = −λt(t) =
λ(t)
T − t

(1 + o(1)) → 0 as t → T.

(ii) Quantization of the focused energy: Let H be the energy space (2.6), then there
exist (u∗, v∗) ∈ H such that the following holds true. Pick a smooth cut off function
χ with χ(y) = 1 for y ≤ 1 and let χ 1

b(t)
(y) = χ(b(t)y), then:

lim
t→T

∥∥∥∥u(t, r)−
(
χ 1

b(t)
Q
)

(
r

λ(t)
)− u∗, ∂t

[
u(t, r)−

(
χ 1

b(t)
Q
)

(
r

λ(t)
)− v∗

]∥∥∥∥
H

= 0.

(2.4)
Moreover, there holds the quantization of the focused energy:

E0 = E(u, ∂tu) = E(Q, 0) + E(u∗, v∗). (2.5)

This theorem thus gives a complete description of a stable blow up regime for all
homotopy numbers k ≥ 1. Stable blow up solutions in O decompose into a singular
part with a universal structure and a regular part which has a strong limit in the scale
invariant space. Moreover, the amount of energy which is focused by the singular
part is a universal quantum independent of the Cauchy data.

Remark 2.2. The energy space H corresponds to the norm:

‖(ε, σ)‖2H =
∫ [

σ2 + (∂yε)2 +
ε2

y2

]
(2.6)

The H2 type affine space H2
a introduced in theorem 2.1 is explicitely:

H2
a = H2 + Q (2.7)

with

‖(ε, σ)‖2H2 = ‖(ε, σ)‖2H +
∫ [

(∂2
yε)2 +

(∂yε)2

y2
+ (∂yσ)2 +

σ2

y2

]
for k ≥ 2, (2.8)

‖(ε, σ)‖2H2 = ‖(ε, σ)‖2H+
∫ [

(∂2
yε)2 + (∂yσ)2 +

σ2

y2

]
+
∫

y≤1

1
y2

(
∂yε−

ε

y

)2

for k = 1.

This fixes in particular the boundary condition for u ∈ H2
a:

lim
r→0

u(t, r) =
{

0 for (WM),
1 for (Y M) , lim

r→+∞
u(t, r) =

{
π for (WM),
−1 for (Y M)

Comments on the result

1. k = 1 case: In the k ≥ 2 and (YM) case, the blow up speed λ(t) is to leading
order universal ie independent of initial data. On the contrary, in the k = 1 case,
the presence of the eO(1) factor in the blow up speed seems to suggest that the law
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is not entirely universal and has an additional degree of freedom depending on the
initial data. In general, the analysis of the k = 1 and to some extend k = 2 problems
is more involved. In particular for k = 1, the instability direction r∂rQ driving the
singularity formation misses the L2 space logarithmically. This anomalous logarith-
mic growth is fundamental in determining the blow up rate. On the other hand,
this anomaly also adversely influences the size of the radiation term which implies
that there is only a logarithmic difference between the leading order and the ra-
diative corrections. This requires a very precise analysis and a careful track of all
logarithmic gains and losses. In the case of larger k, these gains are polynomial and
hence the effect of radiation is more easily decoupled from the leading order behavior.

2. Regularity of initial data: The open set O of initial data described in the
theorem contains an open subset of C∞ data coinciding with Q for all sufficiently
large values of r ≥ R. As a consequence, the main result of the paper in particular
describes singularity formation in solutions arising from smooth initial data. This
should be compared with the results in [18],[19] where solutions, specifically con-
structed to exhibit the blow up behavior given by the rates in (1.9), lead to the
initial data of limited regularity dependent on the value of the parameter ν and
degenerating as ν → 3

2 .

3. Comparison with the L2 critical (NLS): This theorem as stated can be compared
to the description of the stable blow up regime for the L2 critical (NLS)

iut + ∆u + u|u|
4
N = 0, (t, x) ∈ [0, T )× RN , N ≥ 1,

see Perelman [28] and the series of papers by Merle and Raphaël [23], [24], [29],
[25], [26], [27]. There is a conceptual analogy between the mechanisms of a stable
regime singularity formation for the critical (WM) and (YM) problems and the L2

critical (NLS) problem. For the latter problem the sharp blow up speed and the
quantization of the blow up mass is derived in [25], [26], [27]. The concentration
occurs on an almost self-similar scale

λ(t) ∼

√
2π(T − t)

log|log(T − t)|
as t → T.

In both (WM), (YM) and the L2 critical (NLS) problems self-similar singularity
formation is corrected by subtle interactions between the ground state and the ra-
diation parts of the solution. The precise nature of these interactions, affecting the
blow up laws, depends in a very sensitive fashion on the asymptotic behavior of the
ground state: polynomially decaying to the final value for the (WM) and (YM) and
exponentially decaying for the (NLS), see also [20] for related considerations. This
dependence becomes particularly apparent upon examining the blow up rates for the
(WM) problem in different homotopy classes parametrized by k. For k = 1 the har-
monic map approaches its constant value at infinity at the slowest rate, which leads
to the strongest deviation of the corresponding blow up rate from the self-similar law.

4. Least energy blow up solutions: The importance of the k = 1 case for the (WM)
problem is due to the fact that the k = 1 ground state is the least energy harmonic
map:

E(Q) = 4πk.

A closer investigation of the structure of Q for k ≥ 2 shows that this configuration
corresponds to the accumulation of k topological charges at the origin r = 0. For
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the full, non-symmetric problem, we expect such configurations to split under a
generic perturbation into a collection of k = 1 harmonic maps and lead to a different
dynamics driven by the evolution of each of the k = 1 ground states and their
interaction.

From this point the stability of the least energy k = 1 configuration under generic
non-symmetric perturbations is an important remaining problem.

3. Strategy of the proof

Let us sketch the main ingredients of the proof of Theorem 2.1.

Step 1 The family of approximate self similar profiles.

We start with the construction of suitable approximate self-similar solutions in
the fashion related to the approach developed in [24], [26]. Following the scaling
invariance of (1.3), we pass to the self-similar variables and look for a one parameter
family of self similar solutions dependent on a small -scaling invariant- parameter
b > 0:

u(t, r) = Qb(y), y =
r

λ(t)
, λ(t) = b(T − t).

This transformation maps (1.3) into the self-similar equation:

−∆v + b2DΛQb + k2 f(v)
y2

= 0 (3.1)

where the differential operators Λ, D are given by

Λf = y · ∇f, Df = f + Λf.

A well known class of exact solutions are given by the explicit profiles:

Qb(r) = Q

(
r

1 +
√

1− b2r2

)
, r ≤ 1

b
.

These solutions were used by Côte to prove that Q is unstable for both (WM) and
(YM), [9]. A direct inspection however reveals that these have infinite energy due
to a logarithmic divergence on the backward light cone

r = (T − t) equivalently y =
1
b
.

This situation is exactly the same for the L2 critical (NLS), [24], and reveals the
critical nature of the problem. Note that in higher dimensions finite energy self-
similar solutions can be shown to exist thus providing explicit blow up solutions to
the Wave Map and Yang-Mills equations, [32], [7].
In order to find finite energy suitable approximate solutions to (3.1) in the vicinity
of the ground state Q we introduce a formal expansion

Qb = Q + Σp
i=1b

2iTi.

Substituting the ansatz into the self-similar equation (3.1), we get at the order b2i

an equation of the form:
HTi = Fi (3.2)

where

H = −∆ + k2 f ′(Q)
y2

(3.3)
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is obtained by linearizing (3.1) on Q (setting b = 0) and Fi is a nonlinear expression.
The solvability of (3.2) requires that Fi is orthogonal to the kernel of H, which is
explicit by the variational characterization of Q:

Ker(H) = span(ΛQ) (3.4)

and hence the orthogonality condition:

(Fi,ΛQ) = 0. (3.5)

While the condition (3.5) seems at first hand to be a very nonlinear condition, it
can be proved to hold due to the specific algebra of the H1 critical problem and its
connection to the Pohozaev identity. In fact, if Q

(p)
b = Q+Σp

i=1b
2iTi is the expansion

of the profile to the order p, then (3.5) holds as long as the Pohozaev computation
is valid: (

−∆Q
(p)
b + b2DΛQ

(p)
b + k2 f(Q(p)

b )
y2

, DΛQ
(p)
b

)
(3.6)

= lim
R→+∞

[
b2

2
|rΛQ

(p)
b (R)|2 +

k2

2
|g(Q(p)

b (R)|2
]

= 0. (3.7)

By a direct computation, F1 ∼ DΛQ ∼ 1
yk as y → +∞ and at each step, the

inversion of (3.2) dampens the decay of Ti+1 at infinity by an extra y2 factor, and
hence the validity of (3.7) comes under question after p steps, for as y →∞:

Tp(y) ∼ ck

y
for p =

k − 1
2

, k odd, (3.8)

Tp(y) ∼ ck for p =
k

2
, k even. (3.9)

In fact (3.8), (3.9) will result in a universal nontrivial flux type contribution to (3.6).
Moreover, Tp is the first term which gives an infinite contribution to the energy of the
approximate self-similar profile Q

(p)
b ( r

λ(t)). Tp is the radiation term which becomes
dominant in the region y ≥ 1

b – exterior to the backward light cone from a singularity
at the point (T, 0). We therefore stop the asymptotic expansion at p1 and localize
constructed profiles by connecting Qb to the constant a = Q(+∞), which is also an
exact self-similar solution:

PB1 = χB1Qb + (1− χB1)a, B1 =
|logb|

b
>>

1
b

(3.10)

where χB1 = 1 for y ≤ B1, χB1 = 0 for y ≥ 2B1. PB1 satisfies an approximate
self-similar equation of the form:

−∆PB1 + b2DΛPB1 + k2 f(PB1)
y2

= ΨB1 (3.11)

where ΨB1 is very small inside the light cone y ≤ 1
b but encodes a slow decay near

B1 induced by the cut off function and the radiative behavior of Tp at infinity.

Step 2 The H2 type bound.

1We will in fact also need the next term Tp+1 in the expansion, what will be made possible thanks
to a subtle cancellation
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Let now u(t, r) ∈ H2
a be the solution to (1.3) for a suitably chosen initial data close

enough to Q. Given the profile PB1 , we introduce, with the help of the standard
modulation theory, a decomposition of the wave:

u(t, r) = PB1(t)(
r

λ(t)
) + w(t, r)

or alternatively

u(t, r) = (PB1(t) + ε)(s, y), y =
r

λ(t)
,

ds

dt
=

1
λ

with B1 given by (3.10) and where we have set the relation

b(s) = −λs

λ
= −λt. (3.12)

The decomposition is complemented by the orthogonality condition2

∀s > 0, (ε(s),ΛQ) = 0

as is natural from (3.4). Our first main claim is the derivation of a pointwise in time
bound on ε

‖ε‖H̃ . bk+1 (3.13)

in a certain weighted Sobolev space H̃. Bounds related to (3.13) but for a weaker
norm than H̃ and with bk+1 replaced by b4 were derived in [31] for higher homotopy
classes k ≥ 4. They were a consequence of the proof of energy and Morawetz type
estimates for the corresponding nonlinear problem satisfied by w. The linear part of
the equation for w is given by the expression

∂2
t w + Hλw

with the Hamiltonian

Hλ = −∆ +
f ′(Qλ)

r2
(3.14)

Special variational nature of Q, discovered in [2], provides an important factorization
property for Hλ:

Hλ = A∗λAλ, Aλ = −∂r + k
g′(Qλ)

r
. (3.15)

It arises as a consequence of the fact that3 Q represents the co-rotational global
minimum of energy V [Φ] in a given topological class of maps Φ : R2 → S2 of degree
k:

V [Φ] =
1
2

∫
R2

(∇xΦ · ∇xΦ) dx,

which can be factorized using the notation εij for the antisymmetric tensor on two
indices, as follows:

V [Φ] =
1
4

∫
R2

[
(∂iΦ± ε j

i Φ× ∂jΦ) · (∂iΦ± εijΦ× ∂jΦ)
]

dx

± 1
2

∫
R2

εijΦ · (∂iΦ× ∂jΦ) dx ,

(3.16)

=
1
4

∫
R2

[
(∂iΦ± ε j

i Φ× ∂jΦ) · (∂iΦ± εijΦ× ∂jΦ)
]

dx ± 4πk

2The actual orthogonality condition is defined with respect to a cut-off version of ΛQ.
3We restrict this discussion to the (WM) case. Similar considerations also apply to the (YM)

problem, [6]
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from which it is immediate that an absolute minimum of the energy functional V [Φ]
in a given topological sector k must be a solution of the equation:

∂iΦ± ε j
i Φ× ∂jΦ = 0 . (3.17)

The ground state Q is precisely the representation of the unique co-rotational solu-
tion of (3.17).

In [31] factorization (3.15) gave the basis for the H2 and Morawetz type bounds for
w, obtained by conjugating the problem for w with the help of the operator Aλ, so
that

AλHλw = H̃λ(Aλw)
with H̃λ = AλA∗λ, and exploiting the space-time repulsive properties of H̃λ to derive
the energy and Morawetz estimates for Aλw. Simultaneous use of pointwise in time
energy bounds and space-time Morawetz estimates however runs into difficulties in
the cases k = 1, 2, which become seemingly insurmountable for k = 1.

A new approach is introduced in [30], still based on the factorization of Hλ, yet
relying only on the appropriate energy estimates for the associated Hamiltonian
H̃λ, which retains its repulsive properties even in the most difficult cases of k = 1, 2.
We note that ‖ε‖H̃ norm introduced above can be conveniently written in the form

‖ε‖2
H̃

= λ2(H̃λAλw,Aλw) + λ2‖(∂tw, 0‖2H .

One difficulty will be that the bound (3.13) is not sufficient to derive the sharp
blow up speed. The size bk+1 in the RHS of (3.13) is sharp and is induced by a
very slowly decaying term in ΨB1 in (3.11), which arises from the localization of the
profile Qb. Such terms however are localized on y ∼ B1 >> 1

b far away from the
backward light cone with the vertex at the singularity. Another crucial new feature
of our analysis here is a use of localized energy identities. It is based on the idea of
writing the energy identity in the region bounded by the initial hypersurface t = 0
and the hypersurface

r = 2
λ(t)
b(t)

, equivalently y =
2

b(t)

which, under the bootstrap blow up assumptions, is complete (the point r = 0 is
reached at the blow up time) and space-like. Such an energy identity effectively
restricts the error term ΨB1 to the region y ≤ 2/b, where it is better behaved, and
leads to an improved bound:

‖ε‖H̃(y≤ 2
b
) .

bk+1

|logb|
. (3.18)

Note that the logarithmic gain from (3.13) to (3.18) is typical of the k = 1 case and
can be turned to a polynomial gain for k ≥ 2.

Step 3 The flux computation and the derivation of the sharp law.

The pointwise bounds (3.13), (3.18) are specific to the almost self-similar regime
we are describing. They are derived by a bootstrap argument, which incidentally
requires only an upper bound4 on |bs|. To derive the precise law for b we examine

4Such an upper bound is already sufficient to conclude the finite time blow up and establish a
lower bound on the concentration scale λ(t), see [23], [22] for related considerations.
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the equation for ε, which has the following approximate form:

∂2
sε + HB1ε = −bsΛPB1 + ΨB1 + L.O.T. (3.19)

where HB1 = −∆ + k2 f ′(PB1
)

y2 . We consider an almost self-similar solution PB0

localized on the scale B0 = c
b with a well chosen constant 0 < c < 1 and project

this equation onto ΛPB0 , which is almost in the null space of HB1 . The result is an
identity of the form:

bs|ΛPB0 |2L2 = (ΨB1 ,ΛPB0) + O(bk−1‖ε‖H̃(y≤ 2
b
)). (3.20)

The first term in the above RHS yields the leading order flux and tracks the nontrivial
contribution of Tp to the Pohozaev integration (3.6):

(ΨB1 ,ΛPB0) = −ckb
2k(1 + o(1))

for some universal constant ck. This computation can be thought of as related to
the derivation of the log-log law in [26]. The ε-term in (3.20) is treated with the
help of (3.18), observe that (3.13) alone would not have been enough:

O(bk−1‖ε‖H̃(y≤ 2
b
)) = o(b2k).

Finally, from the behavior

ΛQ ∼ 1
yk

as y → +∞

and PB0 ∼ Q for b small, there holds:

|ΛPB0 |2L2 ∼
{

ck for k ≥ 2
c1|logb| for k = 1

for some universal constant ck > 0. We hence get the following system of ODE’s for
the scaling law:

ds

dt
=

1
λ

, b = −λs

λ
, bs = −

{
ck(1 + o(1))b2k for k ≥ 2
(1 + o(1)) b2

2|logb| for k = 1

Its integration yields – for the class of initial data under consideration – the existence
of T < +∞ such that λ(T ) = 0 with the laws (2.2), (2.3) near T , thus concluding the
proof of the sharp asymptotics (2.2), (2.3). The non-concentration of the excess of
energy (2.4), (2.5) now follows from the dispersive bounds obtained on the solution,
hence concluding the proof of Theorem 2.1.
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