Lors de cet exposé, nous nous intéressons à l’étude de perturbations stochastiques de certaines inclusions différentielles du premier ordre : les processus de rafle par des ensembles uniformément prox-réguliers. Ce travail nous amène à combiner la théorie des processus de rafle et celle traitant de la reflexion d’un mouvement brownien sur la frontière d’un ensemble. Nous donnerons des résultats traitant du caractère bien-posé de ces inclusions différentielles stochastiques et de leur stabilité.
@article{SEDP_2008-2009____A19_0, author = {Bernicot, Fr\'ed\'eric}, title = {Perturbation stochastique de processus de rafle}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:19}, pages = {1--13}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2008-2009}, language = {fr}, url = {http://www.numdam.org/item/SEDP_2008-2009____A19_0/} }
TY - JOUR AU - Bernicot, Frédéric TI - Perturbation stochastique de processus de rafle JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:19 PY - 2008-2009 SP - 1 EP - 13 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://www.numdam.org/item/SEDP_2008-2009____A19_0/ LA - fr ID - SEDP_2008-2009____A19_0 ER -
%0 Journal Article %A Bernicot, Frédéric %T Perturbation stochastique de processus de rafle %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:19 %D 2008-2009 %P 1-13 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://www.numdam.org/item/SEDP_2008-2009____A19_0/ %G fr %F SEDP_2008-2009____A19_0
Bernicot, Frédéric. Perturbation stochastique de processus de rafle. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2008-2009), Exposé no. 19, 13 p. http://www.numdam.org/item/SEDP_2008-2009____A19_0/
[1] H. Benabdellah. Existence of solutions to the nonconvex sweeping process. J. Diff. Equations, 164 :286–295, 2000. | MR | Zbl
[2] A. Bensoussan and J.L. Lions. Contrôl impulsionnel et inéquations quasi-variationnelles. Dunod., 1982. | MR | Zbl
[3] F. Bernard, L. Thibault, and N. Zlateva. Characterizations of Prox-regular sets in uniformly convex Banach spaces. J. Convex Anal., 13 :525–560, 2006. | MR | Zbl
[4] F. Bernard, L. Thibault, and N. Zlateva. Prox-regular sets and epigraphs in uniformly convex Banach spaces : various regularities and other properties. submitted, 2008.
[5] F. Bernicot and J. Venel. Stochastic perturbation of sweeping process. Preprint, 2009.
[6] F. Bernicot and J. Venel. Differential inclusions with proximal normal cones in Banach spaces. J. Convex Anal., 2010.
[7] M. Bounkhel and L. Thibault. Nonconvex sweeping process and prox-regularity in Hilbert space. J. Nonlinear Convex Anal., 6 :359–374, 2001. | MR | Zbl
[8] C. Castaing, T.X. Dúc Hā, and M. Valadier. Evolution equations governed by the sweeping process. Set-Valued Anal., 1 :109–139, 1993. | MR | Zbl
[9] C. Castaing and M.D.P. Monteiro Marques. periodic solutions of an evolution problem associated with continuous moving convex sets. Set-Valued Anal., 3(4) :381–399, 1995. | MR | Zbl
[10] F.H. Clarke, R.J. Stern, and P.R. Wolenski. Proximal smoothness and the lower- property. J. Convex Anal., 2 :117–144, 1995. | EuDML | MR | Zbl
[11] G. Colombo and V.V. Goncharov. The sweeping processes without convexity. Set-Valued Anal., 7 :357–374, 1999. | MR | Zbl
[12] G. Colombo and M.D.P. Monteiro Marques. Sweeping by a continuous prox-regular set. J. Diff. Equations, 187(1) :46–62, 2003. | MR | Zbl
[13] J.F. Edmond and L. Thibault. Relaxation of an optimal control problem involving a perturbed sweeping process. Math. Program, Ser. B, 104(2-3) :347–373, 2005. | MR | Zbl
[14] J.F. Edmond and L. Thibault. solutions of nonconvex sweeping process differential inclusion with perturbation. J. Diff. Equations, 226(1) :135–179, 2006. | MR | Zbl
[15] H. Federer. Curvature measures. Trans. Amer. Math. Soc., 93 :418–491, 1959. | MR | Zbl
[16] N. Ikeda and S. Watanabe. Stochastic differential equations and diffusion processes. North. Holland, Amsterdam, 1981. | MR | Zbl
[17] N. El Karoui. Processus de reflexion sur . Séminaire de probabilités IX, Lect. notes in Math., 465, 1975. | EuDML | Numdam | MR | Zbl
[18] P.L. Lions and A.S. Sznitman. Stochastic differential equations with reflecting boundary conditions. Comm. on Pures and Appl. Math., 37 :511–527, 1984. | MR | Zbl
[19] B. Maury and J. Venel. A discrete contact model for crowd motion. submitted, , 2008. | arXiv
[20] B. Maury and J. Venel. A microscopic model of crowd motion. C.R. Acad. Sci. Paris Ser.I, 346 :1245–1250, 2008. | MR
[21] J.J. Moreau. Evolution problem associated with a moving convex set in a Hilbert space. J. Diff. Equations, 26(3) :347–374, 1977. | MR | Zbl
[22] R.A. Poliquin, R.T. Rockafellar, and L.Thibault. Local differentiability of distance functions. Trans. Amer. Math. Soc., 352 :5231–5249, 2000. | MR | Zbl
[23] Y. Saisho. Stochastic differential equations for multi-dimensional domain with reflecting boundary. Prob. Theory and Rel. Fields, 74(3) :455–477, 1987. | MR | Zbl
[24] A.V. Skorohod. Stochastic equations for diffusion processes in a bounded region 1. Theor. Veroyatnost. i Primenen, 6 :264–274, 1961. | MR | Zbl
[25] A.V. Skorohod. Stochastic equations for diffusion processes in a bounded region 2. Theor. Veroyatnost. i Primenen, 7 :3–23, 1962. | MR | Zbl
[26] D.W. Stroock and S.R.S. Varadhan. Diffusion processes with boundary conditions. Comm. Pures Appl. Math., 24 :147–225, 1971. | MR | Zbl
[27] H. Tanaka. Stochastic differential equations with reflecting boundary condition in convex regions. Hiroshima Math. J., 9 :163–177, 1979. | MR | Zbl
[28] L. Thibault. Sweeping process with regular and nonregular sets. J. Differential Equations, 193(1) :1–26, 2003. | MR | Zbl
[29] M. Valadier. Quelques problèmes d’entraînement unilatéral en dimension finie. Séminaire d’Analyse Convexe, 18(8) :Univ. Sci. Tech. Languedoc, Montpellier, 1988. | MR | Zbl
[30] J. Venel. Modélisation mathématique et numérique de mouvements de foule. PhD thesis, Université Paris-Sud, 2008. available at http ://tel.archives-ouvertes.fr/tel-00346035/fr.
[31] J. Venel. A numerical scheme for a first order differential inclusion. submitted, http ://arxiv.org/abs/0904.2694, 2009.
[32] S. Watanabe. On stochastic differential equations for multidimensional diffusion processes with boundary conditions. J. Math. Kyoto. Univ., 11 :155–167,553–563, 1971. | MR | Zbl