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A Two-Particle Quantum System with Zero-Range Interaction

Michele Correggi
CIRM, Fondazione Bruno Kessler,

Via Sommarive 14, 38100 Trento, Italy.
Email: m.correggi@sns.it

Abstract

We study a two-particle quantum system given by a test particle interacting in three dimen-
sions with a harmonic oscillator through a zero-range potential. We give a rigorous meaning to the
Schrödinger operator associated with the system by applying the theory of quadratic forms and defin-
ing suitable families of self-adjoint operators. Finally we fully characterize the spectral properties of
such operators.

1 Introduction

Zero-range (or point) interactions were introduced in the ’30s in [F] and [KP] as simplified models to
describe the interactions between low-energy particles and target nuclei in scattering processes: The range
of the interaction is assumed to be so short that one can approximate the potential, at least formally1,
by a Dirac delta function

∑
i δ(~x − ~xi) where ~x is the position of the test particle and ~xi, i = 1, . . . , N ,

the interaction centers.
The main motivation behind the computational use of such interacting models is that one can obtain
nontrivial interesting results depending on a minimal set of parameters, as, e.g., the interaction strength
and the positions of the nuclei. Indeed the solutions to the Schrödinger equation are almost explicit and
the relevant quantities can be at least approximated with good precision. It should be stressed however
that in the physics literature all the computations are done by applying the perturbation theory and
considering δ(~x−~xi) as a small perturbation of the free Hamiltonian, which of course is not the case and
the perturbation series diverges.

From the mathematical point of view, point interactions attracted some attention already in the ’60s,
when Berezin and Faddeev first gave in [BF] a rigorous definition of a formal one-particle operator with
a zero-range potential and in the last years many interesting results on this topic have been proven. We
refer to the monograph [AGH-KH] and references therein for further details.

In this article we study a two-particle Schrödinger operator which is formally given by the expression

Hα = H0 + “αδ(~x− ~y)”, (1.1)

H0 = −1
2
∆x +Hosc(y), Hosc(y) = −1

2
∆y +

1
2
y2 − 3

2
, (1.2)

where ~x, ~y ∈ R3 and we have set the harmonic frequency of the oscillator equal to 1 and subtracted the
ground state energy of the harmonic oscillator for convenience.

Such a model is major simplification of the formal Hamiltonian used to describe the interaction
between a test particle and several target nuclei, where only one target is kept: The problem of the

1In physics literature such a formal potential is often called pseudo-potential or Fermi pseudo-potential.
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mathematical definition of the Sch̀‘odinger operator describing a test particle interacting through a zero-
range potential with an array of N harmonic oscillators (the so called Rayleigh gas) in three dimensions
was indeed addressed in [DFinT] but it remains unsolved except for the simple case N = 1. The
two-particle system above was studied again in [CDF], where the spectral properties of the rigorous
counterpart of (1.1) are investigated. The reason to consider a so simple model is that, despite its
simplicity, most of the technical issues associated with the N particle model already occur in the analysis
of (1.1), so that there is some hope to find out useful results to apply to the original problem.
In this note we give a rigorous meaning to (1.1) and study its spectral properties. Most of the results are
already stated in [DFinT] and [CDF] but the presentation here is self-contained and cleaner.

In order to give a rigorous meaning to the above expression, one can follow several alternative strate-
gies: The usual one (see [AGH-KH]) is to consider the operator H̃0 = H0 on the domain

D(H̃0) =
{
Ψ ∈ D(H0)

∣∣ PΨ = 0
}
, (1.3)

where we denote by D(H0) the self-adjointness domain of H0, i.e.2,

D(H0) =
{
Ψ ∈ H2(R6)

∣∣ y2Ψ ∈ L2(R6)
}
, (1.4)

and by P the projection onto the plane Π = {(~x, ~y) ∈ R6 | ~x = ~y}, i.e., P : L2(R6) → L2(R3) and3

(PΨ) (~x) = Ψ(~x, ~x). (1.5)

It is not difficult to realize that D is not a domain of self-adjointness for the operator H0. More precisely
H0 is symmetric on D0 and it admits self-adjoint extensions, since the deficiency indexes equal: Indeed
the equation H∗

0Ψ = ∓iΨ is solved by any function of form

Ψ(~x, ~y) =
(
G√±i q

)
(~x, ~y),

where the operator Gλ is given by

(Gλq) (~x, ~y) ≡
∫

Π

d~x′ q(~x′)Gλ(~x, ~y; ~x′, ~x′), (1.6)

q ∈ L2(R3) and (see4 the Appendix in [DFinT]),

Gλ(~x, ~y; ~x′, ~y′) ≡ (H0 + λ)−1 (~x, ~y; ~x′, ~y′) =

1
2

3
2π3

∫ 1

0

dν
νλ−1

(1− ν2)
3
2 | ln ν| 32

exp

{
− 1− ν

2(1 + ν)

(
y2 + y′

2
)
− (~x− ~x′)2

2 ln 1
ν

− ν (~y − ~y′)2

1− ν2

}
. (1.7)

Note that the deficiency indexes are equal to ∞, since there is a solution to the deficiency equation for
any function q such that G√±i q ∈ L2(R6). Hence the family of self-adjoint extensions of H0 contains an
infinite number of self-adjoint operators which are actually labeled by (self-adjoint) operators acting on
L2(Π). We refer to [AGH-KH] and [P] for additional details about this approach.

An alternative approach (see, e.g., [DFigT]) consists in applying a renormalization procedure to the
singular quadratic form given by 〈Ψ|Hα |Ψ〉, i.e.,

F̃γ [Ψ] = F0[Ψ] + γ

∫
R6

d~xd~y δ(~x− ~y)|Ψ(~x, ~y)|2, F0[Ψ] = 〈Ψ|H0 |Ψ〉 , (1.8)

2We denote by Hm the Sobolev space of order m. A point in R3 is always denoted by a vector as, e.g., ~x, whereas
x ∈ R+ stands for the norm of the vector.

3Actually the operator P is well defined only on the subspace of functions belonging to Hm(R6) for m > 3/2 by Sobolev
trace theorem.

4The different power of ν in the integral with respect to the formula in [DFinT] is due to the subtraction of 3
2

in (1.2).
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and then defining the rigorous counterpart of (1.1) as the unique self-adjoint operator associated with
so obtained closed quadratic form. It is indeed clear that the above expression is not well defined for
any Ψ in the domain of the unperturbed form F0 because the restriction of Ψ to the plane Π has not
to belong to L2(Π). However by formally renormalizing the coupling constant γ, one can obtain a well
defined quadratic form which is closed and bounded from below. We stress that in general this approach
does not allow to recover all the self-adjoint extensions above but only some minimal subfamily of them.

In Section 2 we describe in details the renormalization of the quadratic form F̃γ as well as some
fundamental properties of the renormalized form. Section 3 is devoted to the analysis of the domain and
spectrum of the associated family of self-adjoint operators.

2 The Quadratic Form

In this Section we shall investigate the properties of the quadratic form

Fα[Ψ] = Fλ [φλ] + Φλ
α[q]− λ‖Ψ‖2

2, Fλ[φ] = F0[φ] + λ‖φ‖2
2, (2.1)

where
Φλ

α[q] =
∫

R3
d~x

(
α+ aλ(x)

)
|q(~x)|2 +

1
2

∫
R6

d~xd~x′ Gλ(~x, ~x; ~x′, ~x′) |q(~x)− q(~x′)|2 , (2.2)

aλ(x) =
1

(4π)
3
2

{
1
2

+
∫ 1

0

dν
1

(1− ν)
3
2
·[

1− 8νλ−1(1− ν)
3
2

[(1 + ν2)| ln ν|+ 1− ν2]
3
2

exp
{
− (1− ν2)| ln ν|+ 2(1− ν)2

2[(1 + ν2)| ln ν|+ 1− ν2]
x2

} ]}
. (2.3)

The form Fα is defined on the domain

D(Fα) =
{
Ψ ∈ L2(R6)

∣∣ ∃ q ∈ D (
Φλ

α

)
s.t. Ψ = φλ + Gλq, φλ ∈ D(F0)

}
, (2.4)

where λ > 0 is a positive parameter and5

D
(
Φλ

α

)
=

{
q ∈ L2(R3) | Φλ

α[q] <∞
}
. (2.5)

2.1 Heuristic Derivation of Fα

We start the analysis of the quadratic form (2.1) by showing an heuristic derivation of it via a renormal-
ization of the naive singular form (1.8), which can be rewritten as

F̃γ [Ψ] = F0 [Ψ− Gλq] + λ ‖Ψ− Gλq‖2
2 − λ‖Ψ‖2

2 + 〈(H0 + λ)Gλq|Ψ〉+ 〈Ψ|(H0 + λ)Gλq〉

− 〈(H0 + λ)Gλq|Gλq〉+ γ

∫
Π

d~x |Ψ(~x, ~x)|2.

By setting φλ(~x, ~y) ≡ Ψ(~x, ~y)− (Gλq) (~x, ~y) according to (2.4) and

q(~x) = −γΨ(~x, ~x), (2.6)

the expression above becomes

F̃γ [Ψ] = F0 [φλ]+λ ‖φλ‖2
2−λ ‖Ψ‖

2
2 +Φ̃γ [q], Φ̃γ [q] =

∫
Π

d~x q∗(~x)
[
−q(~x)

γ
− (Gλq) (~x, ~x)

]
. (2.7)

5The condition q ∈ L2(R3) is actually not a restriction as it will be clear by Proposition 2.1.
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Note that the above expression is only formal since Gλq diverges on the plane Π because of the singularity
of the free Green function. However given some small neighborhood Uε of Π, one can decompose Gλq as

(Gλq) (~x, ~y) = q(~x) ζε(~x, ~y) + τq(~x, ~y), (2.8)

where ζε is the singular part of Gλχε, χε denoting the characteristic function of the set Uε, and τq remains
bounded as ~x → ~y. The goal is then a renormalization of the coupling constant to cancel the singular
part ζε and, in view of this, we set

(Gren
λ q) (~x) ≡ lim

~y→~x
τq(~x, ~y). (2.9)

Then we consider a tubular neighborhood of Π given for instance by Πδ = {(~x, ~y) ∈ R6 | |~x− ~y| ≤
√

2 δ}
and take some suitable approximation qδ(~x, ~y) of the charge such that qδ → q as δ → 0. The singular
part of (2.7) is

lim
δ→0

∫
Πδ

d~xd~y q∗δ (~x, ~y)
[
− qδ(~x, ~y)
γδ(~x, ~y)

− (Gλqδ) (~x, ~y)
]

=

lim
δ→0

∫
Πδ

d~xd~y q∗δ (~x, ~y)
[
− qδ(~x, ~y)
γδ(~x, ~y)

− qδ(~x, ~y)ζδ(~x, ~y)
]
−

∫
Πδ

d~xd~y q∗δ τδ(~x, ~y),

where we have used the decomposition (2.8) associated with the neighborhood Πδ and replaced the
coupling parameter γ with some function γδ(~x, ~y). The key point in the renormalization is then the
choice

− 1
γδ(~x, ~y)

= ζδ(~x, ~y) + α, (2.10)

for some α ∈ R. Note that because of the divergence of ζ, the original coupling parameter γ has to go to
zero as δ → 0. With this choice the form Φ̃γ can be simply written as

α

∫
Π

d~x |q(~x)|2 −
∫

Π

d~xq∗(~x) (Gren
λ q) (~x), (2.11)

and the second term can expressed in a more convenient form: Since the renormalized quantity can be
written as∫

Π

d~xq∗(~x) (Gren
λ q) (~x) = lim

~y→~x

[ ∫
|~x′−~x|>ε

d~x′ q∗(~x)q(~x′)Gλ(~x, ~y; ~x′, ~x′)+∫
|~x′−~x|<ε

d~x′ q∗(~x) (q(~x′)− q(~x))Gλ(~x, ~y; ~x′, ~x′) +
∫

Π

d~x |q(~x)|2τχε
(~x, ~y)

]
=∫

R6
d~xd~x′ q∗(~x) (q(~x′)− q(~x))Gλ(~x, ~x; ~x′, ~x′)+

∫
Π

d~x |q(~x)|2
[
τχε

(~x, ~x)+
∫
|~x′−~x|>ε

d~x′Gλ(~x, ~x; ~x′, ~x′)
]}

=

− 1
2

∫
R6

d~xd~x′ |q(~x)− q(~x′)|2Gλ(~x, ~x; ~x′, ~x′)−
∫

R3
d~x aλ(~x)|q(~x)|2, (2.12)

where τχε is the regular part of Gλχε and

aλ(~x) = − lim
~y→~x

[
τχε

(~x, ~y) +
∫
|~x′−~x|>ε

d~x′ Gλ(~x, ~x; ~x′, ~x′)
]
. (2.13)

In the final expression in (2.12) the singularity of the Green function is manifestly treated by multiplying
Gλ(~x, ~x; ~x′, ~x′) by |q(~x) − q(~x′)|2, which vanishes on the plane ~x = ~x′. It remains thus to analyze aλ:

Michele Correggi

XVIII–4



After the change of coordinates ~ξ = 1√
2
(~x − ~y) and ~η = 1√

2
(~x + ~y), we have to study the asymptotic

behavior for small ξ of the expression Gλχε, which can be written as

(Gλχε) (~ξ, ~η) =
∫

Uε

d~η′ Gλ(~ξ, ~η; 0, ~η′),

with ~η′ =
√

2 ~x′. Since the right hand side is independent of the shape of Uε, we can choose Uε =
{|~η′ − ~η| < ε}, so that the above expression becomes after a change of coordinates

(Gλχε) (~ξ, ~η) =
1
π3

∫ 1

0

dν
νλ−1

(1− ν2)
3
2 | ln ν| 32m(ν)

3
2
·

exp
{
− 1− ν

4(1 + ν)

[
η2 +

(
~η − ~ξ

)2
]
− 1

4

[
1

| ln ν|
+

2ν
1− ν2

]
ξ2

}
·∫

η′<ε
√

m(ν)

d~η′ e−η′2 exp
{
− 2~η′√

m(ν)
·

[
(1− ν)~η
2(1 + ν)

+
~ξ

2| ln ν|
− ν~ξ

2(1− ν2)

] }
,

where m(ν) stands for the quantity

m(ν) =
1 + ν2

1− ν2
+

1
| ln ν|

. (2.14)

The above expression allows to investigate the singularity of the Green function: By setting ν = 1 − ν′

and ν′ = ξ2µ, one gets

(Gλχε) (~ξ, ~η) =
1
π3ξ

∫ 1
ξ2

0

dµ
f1(1− ξ2µ)

µ
3
2

exp
{
− ξ2µ

4(2− ξ2µ)

[
η2 +

(
~η − ~ξ

)2
]}

exp
{
−f2(1− ξ2µ)

4µ

}
·∫

η′<ε
√

m(1−ξ2µ)

d~η′ exp
{
− η′

2 − 2~η′ ·
[

ξ2µ ~η

2
√
m(1− ξ2µ)(2− ξ2µ)

+
f3(1− ξ2µ)~ξ

2ξ2µ
√
m(1− ξ2µ)

]}
, (2.15)

with

f1(ν) ≡
νλ−1

(1 + ν)
3
2 (| ln ν|)

3
2 m(ν)

3
2

−→
ν→1

1
8
, (2.16)

f2(ν) ≡
1− ν

| ln ν|
+

2ν
1 + ν

−→
ν→1

2, f3(ν) ≡
1− ν

| ln ν|
− 2ν

1 + ν
−→
ν→1

0, (2.17)

where we have used limν→1(1− ν)m(ν) = 2. Therefore as ξ → 0

(Gλχε) (~ξ, ~η) ' 1
8π3ξ

∫ ∞

0

dµ
1
µ

3
2

exp
{
− 1

2µ

} ∫
R3

d~η′ e−η′2 =
c

ξ
,

i.e., one recovers the usual coulombian singularity of the Green function of the Laplacian in three dimen-
sions. For convenience we can write the expression above also as

(Gλχε) (~ξ, ~η) ' 1
8π

3
2

∫ ∞

0

dµ
1
µ

3
2

exp
{
− ξ2

2µ

}
=

1
8π

3
2

[ ∫ 1

0

dµ
1
µ

3
2

exp
{
− ξ2

2µ

}
+

1
2

]
, (2.18)

where we have separated the singular contribution (the first term in the expression above) from the
regular one, which converges as ξ → 0 to 1/2. Therefore from (2.13) and (2.15), one obtains

aλ(~x) =
1

(4π)
3
2

{
1
2

+ lim
ξ→0

[ ∫ 1

0

dµ
1
µ

3
2

exp
{
− ξ2

2µ

}
−

∫
R3

d~x′ Gλ(~x, ~x; ~x′, ~x′)
]}

=

1
(4π)

3
2

{
1
2

+
∫ 1

0

dν
1

(1− ν)
3
2

[
1− 8f1(ν) exp

{
−

[
1− ν

2(1 + ν)
− (1− ν)2

4(1 + ν)2m(ν)

]
η2

} ]}
. (2.19)
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Finally (2.7),(2.7), (2.11), (2.12) and (2.19) yield the expression of the quadratic form (2.1)-(2.5). Note
that the quantity between square brackets in (2.3) goes to zero as ν → 1 for any finite ~x, so that the
integral in ν is actually finite: Indeed the exponential converges to 1 and

lim
ν→1

8νλ−1(1− ν)
3
2

(1 + ν2)| ln ν|+ 1− ν2
= 1.

Therefore the function aλ is well defined and bounded for any finite ~x and diverges as x → ∞: Setting
ν = 1− x−2µ, one has, as x→∞,

aλ(x) ' x

(4π)
3
2

∫ x2

0

dµ
1− e−µ/2

µ
3
2

' c x. (2.20)

2.2 Rigorous Definition of the Schrödinger Operator Hα

In the first part of this Section we investigate the definition (2.1) and prove that the form Fα is closed
and bounded from below. To this purpose we first need to show that (2.1) is well posed and, for instance,
the decomposition

Ψ = φλ + Gλq, (2.21)

is well defined and unique for any given Ψ ∈ L2(R6) and λ > 0.
We start however by stating a crucial result about the natural domain D(Φλ

α). In the following we
shall denote by q̂ the Fourier transform of the function q(~x), i.e.,

q̂(~k) ≡ 1
(2π)

3
2

∫
R3

d~x e−i~k·~xq(~x). (2.22)

Proposition 2.1 (Domain of Φλ
α) For any λ > 0, one has

D
(
Φλ

α

)
=

{
q ∈ H1/2(R3)

∣∣ q̂ ∈ H1/2(R3)
}
. (2.23)

and the form Φλ
α is closed and bounded from below on the domain above.

Proof: Before characterizing the domain D(Φλ
α), we first prove that Φλ

α is coercive on such a domain
for λ sufficiently large, which implies the second part of the Proposition. By direct inspection of (2.2)
one has the bound

Φλ
α[q] ≥

∫
R3

d~x (α+ aλ(x)) |q(~x)|2 ≥
(
α+ inf

~x∈R3
aλ(x)

)
‖q‖2

2, (2.24)

but aλ(x) is an increasing function of x, so that

inf
~x∈R3

aλ(x) = aλ(0) =
1

(4π)
3
2

{
1
2

+
∫ 1

0

dν
1

(1− ν)
3
2

[
1− 8νλ−1(1− ν)

3
2

[(1 + ν2)| ln ν|+ 1− ν2]
3
2

]}
.

Moreover
∂aλ(0)
∂λ

=
1

(4π)
3
2

∫ 1

0

dν
8| ln ν|νλ−1

[(1 + ν2)| ln ν|+ 1− ν2]
3
2
> 0, (2.25)

i.e., aλ(0) is increasing, and limλ→∞ aλ(0) = +∞. Therefore for any α ∈ R there exists λα, such that
for λ > λα, the factor on the right hand side of (2.24) is strictly positive. The result for any λ > 0 is a
trivial consequence of coerciveness of the form Φλ

α[q] + λα‖q‖2
2.
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In order to prove the claim about the domain D(Φλ
α), we show first that the following upper bound

holds true,
Φλ

α[q] ≤ c
(
‖q‖2

H1/2(R3) + ‖q̂‖2
H1/2(R3)

)
. (2.26)

By the asymptotics (2.20), it is clear that there exists a constant c such that∫
R3

d~x aλ(x)|q(x)|2 ≤ c

∫
R3

d~x (1 + x)|q(x)|2 ≤ c ‖q̂‖2
H1/2(R3) , (2.27)

therefore it remains to check the expression

Φλ
0 [q] ≡ 1

2

∫
R6

d~xd~x′ Gλ(~x, ~x; ~x′, ~x′) |q(~x)− q(~x′)|2 , (2.28)

but using the pointwise bound

Gλ(~x, ~x; ~x′, ~x′) ≤ c

∫ 1

0

dν νλ−1
(
1− ν2

)− 3
2 | ln ν|− 3

2 exp
{
− (~x− ~x′)2

2 ln 1
ν

− ν(~x− ~x′)2

1− ν2

}
,

and taking the Fourier transform, we obtain

Φλ
0 [q] ≤ c

∫
R3

d~k
∫ 1

0

dν
νλ−1

(2ν| ln ν|+ 1− ν2)3/2

{
1− exp

[
− (1− ν2)| ln ν|

2(1− ν2 + 2ν| ln ν|)
k2

]}
|q̂(k)|2 ≤

c

∫
R3

d~k (1 + k)|q̂(k)|2 ≤ c ‖q‖2
H1/2(R3) . (2.29)

Thus (2.26) is proven and it remains to show the corresponding lower bound. The key point is that the
form Φλ

α can be rewritten by applying the Fourier transform in the following way

Φλ
α[q] =

∫
R3

d~k (α+ ãλ(k)) |q̂(~k)|2 +
1
2

∫
R6

d~kd~k′ G̃λ(~k;~k′)
∣∣∣q̂(~k)− q̂(~k′)

∣∣∣2 , (2.30)

where

ãλ(k) ≡ 1
(4π)

3
2

{
1
2

+
∫ 1

0

dν
1

(1− ν)
3
2

[
1− 8νλ−1(1− ν)

3
2

[(1 + ν2)| ln ν|+ 1− ν2]
3
2
·

exp
{
− (1− ν2)| ln ν| k2

2 [(1 + ν2)| ln ν|+ 1− ν2]

}]}
, (2.31)

and G̃λ(~k;~k′) is a suitable kernel. Note that ãλ is not the Fourier transform of aλ, as one might expect,
but it comes from the extraction of the term containing |q̂(~k) − q̂(~k′)|2. However it is not difficult to
show that the function ãλ(k) has the same asymptotic behavior for k →∞ as aλ(x), namely ãλ(k) ' ck.
Therefore, since infx aλ(x) → ∞ and infk ãλ(k) → ∞ as λ → ∞, by taking λ sufficiently large, one can
find some positive constant c such that at the same time∫

R3
d~x aλ(x)|q(~x)|2 ≥ c ‖q̂‖2

H1/2(R3) ,

∫
R3

d~k ãλ(k)|q̂(~k)|2 ≥ c ‖q‖2
H1/2(R3) . (2.32)

The result is then a simple consequence of (2.2) and (2.30) which imply

Φλ
α[q] ≥ 1

2

∫
R3

d~x aλ(x)|q(~x)|2 +
1
2

∫
R3

d~k aλ(k)|q̂(~k)|2. �

We are now able to show that the decomposition Ψ = φλ + Gλq and the form Fα does not depend
on λ:
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Proposition 2.2 (Decomposition Ψ = φλ + Gλq) For any λ > 0 and Ψ ∈ L2(R6), there is a unique
q ∈ D(Φλ

α) such that Ψ = φλ + Gλq with φλ ∈ D(F0).

Proof: We first observe that if q ∈ D(Φλ
α) then Gλq ∈ L2(R6) for any given λ > 0: It is indeed

sufficient to evaluate
‖Gλq‖2

L2(R6) =
∫

R6
d~xd~x′ q∗(~x′)q(~x)T (~x; ~x′),

where the (positive) kernel T (~x, ~x′) can be bounded by

T (~x, ~x′) =
1

8π3

∫ 1

0

dν
∫ 1

0

dµ
(

ν

1− ν2
+

µ

1− µ2

)−3

·

νλ−1(1− ν2)−
3
2 | ln ν|− 3

2µλ−1(1− µ2)−
3
2 | lnµ|− 3

2 exp
{
− |~x− ~x′|2

4( 1−ν2

ν + 1−µ2

µ )

}
.

One can then apply Schur test (see, e.g., [HS]) to get

‖Gλq‖2
L2(R6) ≤ ‖q‖2

2 sup
~x′∈R3

∫
R3

d~x T (~x, ~x′) ≤

‖q‖2
2

8π
3
2

∫ 1

0

dν
∫ 1

0

dµ νλ−1µλ−1| ln ν|− 3
2 | lnµ|− 3

2

(
ν

1− ν2
+

µ

1− µ2

)− 3
2

≤ c ‖q‖2
2 . (2.33)

The above calculation thus guarantees that for any q ∈ D(Φλ
α) and λ > 0, Gλq ∈ L2(R6), but, as we are

going to see, under the same hypothesis Gλq /∈ D(F0), unless q = 0: Here we present only a formal proof
of the result which can however be made rigorous by modifying6 the form F0 in a neighborhood Πδ of
the plane Π and then showing that the expression diverges as δ → 0. By using the distributional identity

[(H0 + λ)Gλq] (~x, ~y) = q(~x)δ(~x− ~y),

one can calculate

F0 [Gλq] =
∫

R6
d~xd~x′q∗(~x′)q(~x)Gλ(~x, ~x; ~x′, ~x′) =∫

R6
d~xd~x′q∗(~x′)q(~x) [Gλ(~x, ~x; ~x′, ~x′)−Gren

λ (~x, ~x; ~x′, ~x′)] +
∫

R6
d~xd~x′q∗(~x′)q(~x)Gren

λ (~x, ~x; ~x′, ~x′) =∫
R6

d~xd~x′q∗(~x′)q(~x) [Gλ(~x, ~x; ~x′, ~x′)−Gren
λ (~x, ~x; ~x′, ~x′)]− Φλ

α[q],

where the regularization is performed in same way as described in (2.11). Now it is clear that for any
charge q ∈ D(Φλ

α) the second term on the right hand side of the above expression is always bounded,
whereas the fist term diverges by definition. Thus F0[q] = +∞, Gλq /∈ D(F0) and the decomposition
(2.21) is well posed.

The uniqueness can be very easily proven by observing that, if by absurd there exists q̃ ∈ D(Φλ
α) such

that Ψ = φ̃λ + Gλq̃ with φ̃λ ∈ D(F0), then φ̃λ − φλ = Gλq − Gλq̃ /∈ D(F0), which implies φ̃λ − φλ =
Gλq −Gλq̃ = 0 since the left hand side of the above expression is by definition in D(F0). Therefore q̃ = q
since the operator Gλ has empty kernel. 2

Two other important properties of the domain D(Fα) are formulated in the Proposition below:

6For instance, as in [DFinT], one can simply cut the integration over Πδ , which contains the singular contribution.
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Proposition 2.3 (Domain of Fα) The form Fα and its domain D(Fα) do not depend on λ.
Moreover for any Ψ ∈ D(Fα),

lim
δ→0

1
δ

∫
|~x−~y|=δ

d~xΨ(~x, ~y) = q(~y), (2.34)

in the norm topology in L2(Π).

Remark: The above Proposition shows that q is the coefficient of the singular part (i.e., the part not
in the domain D(F0) of the unperturbed form) of any wave function Ψ ∈ D(Fα). The fact that such a
singular part can be expressed as Gλq, which resembles the electrostatic potential generated by a charge
q, motivates the name “charge” for q.

Proof: The fact that the domain D(Fα) is independent of λ simply follows from the observation that,
if Ψ = φλ + Gλq then also Ψ = φλ′ + Gλ′q for λ′ 6= λ, λ′ > 0: Indeed, since Gλq − Gλ′q ∈ D(F0), one can
set φλ′ = φλ + Gλq − Gλ′q, which implies the statement above.

It remains to show that the form Fα itself does not depend on λ, but we are going to prove that

Fλ[Ψ]−Fλ′ [Ψ]− (λ− λ′) ‖Ψ‖2
2 = Φλ′

α [q]− Φλ
α[q]. (2.35)

The left hand side of the expression above can be written as

Fλ[Ψ]−Fλ′ [Ψ]− (λ− λ′) ‖Ψ‖2
2 = (λ′ − λ) 〈Gλq|Gλ′q〉 , (2.36)

where we have used H0(Gλ′q − Gλq) = λGλq − λ′Gλ′q, which follows from the first resolvent identity.
Similarly7

aλ′(~x)− aλ(~x) +
∫

R3
d~x′ (Gλ′(~x, ~x; ~x′, ~x′)−Gλ(~x, ~x; ~x′, ~x′)) = 0,

which yields

Φλ′

α [q]− Φλ
α[q] =

∫
R3

d~x q∗(~x) [(Gλ′ − Gλ) q] (~x, ~x), (2.37)

and the result is a direct consequence of the resolvent identity.
Concerning the second part of the Proposition, we first show that, for any λ > 0, the regular part φλ

of the wave function Ψ gives no contribution in the integral (2.34), i.e.,

lim
δ→0

1
δ

∥∥∥∥∫
|~x−~y|=δ

d~x φλ(~x, ~y)
∥∥∥∥

L2(Π)

= 0.

Indeed by Sobolev inequality in R3 ‖f‖6 ≤ ‖∇f‖2 and, setting φλ,~y(~x) ≡ φλ(~x, ~y), we have for almost
every ~y ∈ R3

1
δ

∣∣∣∣ ∫
|~x−~y|=δ

d~x φλ(~x, ~y)
∣∣∣∣ ≤ c

√
δ ‖φλ,~y‖L4(R3) ≤ c

√
δ ‖φλ,~y‖

3
4
L6(R3) ‖φλ,~y‖

1
4
L2(R3) ≤

c
√
δ ‖∇~xφλ,~y‖

3
4
L2(R3) ‖φλ,~y‖

1
4
L2(R3) ≤ c

√
δ ‖φλ,~y‖H1(R3) ,

and taking the L2 norm in ~y of both sides

1
δ

∥∥∥∥∫
|~x−~y|=δ

d~x φλ(~x, ~y)
∥∥∥∥

L2(Π)

≤ c
√
δ ‖φλ‖H1(R6) −→

δ→0
0.

7Note that the quantity inside the integral is regular, since the Green function singularities are cancelled by the difference.
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To complete the proof it remains to show that

lim
δ→0

1
δ

∫
|~x−~y|=δ

d~x (Gλq) (~x, ~y) = q(~y),

in L2 norm. We start by calculating8

lim
δ→0

1
δ

∫
R3

d~y′
∫
|~x−~y|=δ

d~x Gλ(~x, ~y; ~y′, ~y′) =
1

2
3
2π3

lim
δ→0

∫ 1
δ2

0

dµ
(1− δ2µ)λ−1

µ
3
2 (2− δ2µ)

3
2

[
δ2

| ln(1− δ2µ)|

] 3
2

·∫
R3

d~y′′
∫
|~x′|=1

d~x′ exp
{
− δ2µ(y2 + (~y + δ~y′′)2

2(2− δ2µ)
− δ2(~x′ − ~y′′)2

2| ln(1− δ2µ)|
− (1− δ2µ)y′′2

µ(2− δ2µ)

}
=

1
8π3

∫ ∞

0

dµ
1
µ3

∫
R3

d~y
∫
|~x|=1

d~x exp
{
− (~x− ~y)2

2µ
− y2

2µ

}
=

1
2
√
π

∫ ∞

0

dµ
1
µ

3
2
e−

1
4µ = 1, (2.38)

where we have exchanged the integrals with the limit δ → 0 by dominated convergence. Therefore we
have the identity

q(~y)− lim
δ→0

1
δ

∫
|~x−~y|=δ

d~x (Gλq) (~x, ~y) = lim
δ→0

1
δ

∫
|~x−~y|=δ

d~x
∫

R3
d~y′ Gλ(~x, ~y; ~y′, ~y′) (q(~y)− q(~y′)) , (2.39)

and, in order to complete the proof, it suffices to observe

lim
δ→0

∫
R3

d~y
∣∣∣∣1δ

∫
|~x−~y|=δ

d~x
∫

R3
d~y′ Gλ(~x, ~y; ~y′, ~y′) (q(~y)− q(~y′))

∣∣∣∣2 ≤
lim
δ→0

∫
R3

d~y
[ ∫

R3
d~y′ Tδ(~y; ~y′) |q(~y)− q(~y′)|

]2

, (2.40)

where the kernel Tδ(~y; ~y′) is the convolution kernel

Tδ(~y; ~y′) =
1

2
3
2π3δ

∫
|~x−~y|=δ

d~x
∫ 1

0

dν νλ−1(1− ν2)−
3
2 | ln ν|− 3

2 exp
{
−|~x− ~y′|2

2| ln ν|
− ν|~y − ~y′|2

1− ν2

}
. (2.41)

Indeed it is not difficult to show that the integral operator with kernel Tδ converges as δ → 0 to the
identity operator: The integral of Tδ(~y) is independent of δ and it converges pointwise to 0 in any
compact set not containing the origin, which implies Tδ(~y) → δ(~y) in the sense of distributions. The
right hand side of (2.40) thus vanishes, since one can exchange the integral with the limit δ → 0 again
by dominated convergence. 2

The main result about the quadratic form Fα is the following

Theorem 2.1 (Closure of Fα) The quadratic form Fα is closed and bounded from below on the domain
D(Fα).

Proof: By Propositions 2.2 and 2.3, the domain of the form is well defined and independent of λ.
Therefore it is sufficient to show that the quadratic form Fα+λ‖Ψ‖2

2 is closed and positive for λ sufficiently
large.
Positivity is a trivial consequence of the explicit expression of the form F0, which is the expectation value
of a positive operator, together with Proposition 2.1 (see also (2.24) and the discussion right after). It

8We apply the change of variables δ~y′′ = ~y′ − ~y and δ~x′ = ~x− ~y.
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remains then to prove closure but, because of Proposition 2.1, it is sufficient to note that Fλ[φλ] ≥ λ‖φλ‖2
2,

i.e., the form Fλ is coercive and then closed. 2

The family of self-adjoint operators associated with the quadratic form Fα are given in the following
Proposition. We denote by Γλ the self-adjoint operator associated with Φλ

α, i.e.,

〈q|Γλ |q〉 ≡ Φλ
α[q]− α‖q‖2

2. (2.42)

Proposition 2.4 (Operator Hα) The self-adjoint operator Hα associated with the form Fα is given by

D (Hα) =
{
Ψ ∈ L2(R6)

∣∣ ∃q ∈ D (
Γλ

)
s.t. Ψ = φλ + Gλq, φλ ∈ D(H0),

(
α+ Γλ

)
q = Pφλ

}
, (2.43)

(Hα + λ) Ψ = (H0 + λ)φλ. (2.44)

Moreover for any Ψ ∈ L2(R6), the resolvent of Hα can be expressed as

(Hα + λ)−1 Ψ = (H0 + λ)−1 Ψ + Gλq, (2.45)

where λ > 0 and q ∈ D(Γλ) solves the equation(
α+ Γλ

)
q = P (H0 + λ)−1 Ψ. (2.46)

Proof: By definition a function Ψ belongs to the domain D if there exists some χ = HαΨ ∈ L2(R3)
such that Fα[Ψ,Ξ] = 〈χ|Ξ〉 for any Ξ ∈ D(Fα). The action and domain of Hα easily follow. 2

It is interesting to notice that the family of self-adjoint operators Hα, α ∈ R, contains only self-adjoint
extensions of the operator H̃0 introduced in (1.3). Moreover such extensions are local in the following
sense: If Ψ ∈ D(Hα) and Ψ = 0 in some open set Ω, then HαΨ = 0 in the same open set Ω. Similarly the
boundary condition associated with Hα, i.e., (α+ Γλ)q = Pφλ is local by construction, since the value of
the charge q(~x) is proportional to Ψ(~x, ~x). All these features can be summed up by saying that Hα is a
local point interaction Hamiltonian.
We stress however that the family Hα by no means recovers all the possible self-adjoint extension of H̃0

(see, e.g., [P]): For instance one could take into account more general extensions labeled by functions
α(~x) over the plane Π. In this context Hα, α ∈ R, are minimal extensions of H̃0. The unperturbed
hamiltonian H0 belongs to the family and is recovered by setting α = +∞.

3 Spectral Analysis

As pointed out in the Introduction, zero-range or point interaction Hamiltonians prove to be very useful in
order to explicitly investigate the main physical features of the (toy) model as, in particular, the spectral
properties of the system. As we are going to see the energy spectrum of Hα is basically inherited from
the operator Γλ (2.42). We start then by investigating the spectral properties of Γλ:

Proposition 3.1 (Spectral Analysis of Γλ) For any λ > 0 (2.42) defines an unbounded self-adjoint
operator Γλ with domain

D
(
Γλ

)
=

{
q ∈ L2(R3) | q ∈ H1/2(R3), q̂ ∈ H1/2(R3)

}
. (3.1)

Moreover there exists some λ0 such that Γλ > 0 for any λ > λ0.
The spectrum of Γλ is discrete, i.e., σ(Γλ) = σpp(Γλ), and denoting by γn(λ), n ∈ N, its eigenvalues
arranged in an increasing order (limn→∞ γn(λ) = +∞), one has:

(i) For any n ∈ N, γn(λ) is an non-decreasing function of λ ∈ R+,
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(ii) limλ→0 γ0(λ) = −∞,

(iii) There exists a finite constant c such that γn(λ) > −c for any λ ∈ R+ and n ≥ 1.

Proof: The fact that Γλ is a self-adjoint operator as well as the domain characterization are trivial
consequences of (2.42).
By (2.2) and (2.42), Γλ can be decomposed as Γλ = aλ + Γλ

0 , where aλ is the multiplication operator by
the function aλ(x) and Γλ

0 is the self-adjoint operator associated with the positive quadratic form

〈q|Γλ
0 |q〉 =

1
2

∫
R3

d~x′ Gλ(~x, ~x; ~x′, ~x′) |q(~x)− q(~x′)|2 . (3.2)

In order to prove the first statement, it is then sufficient to notice that aλ(x) ≥ aλ(0) and limλ→∞ aλ(0) =
∞, so that by (2.25) for λ sufficiently large the operator is positive.

The discreteness of σ(Γλ) follows from compactness of the domain (3.1) (see, e.g., Theorem XIII.64 in
[RS4]): By Rellich’s criterion (Theorem XIII.65 in [RS4]) one immediately has that D(Γλ) is a compact
subset of L2(R3), since the H1/2 norm of both q and q̂ are bounded.

Monotonicity of the eigenvalues as functions of λ is a consequence of monotonicity of the form Φλ
α

with respect to λ.
The second statement can be proven by showing that there is a trial function q ∈ D(Γλ) such that
〈q|Γλ |q〉 → −∞ as λ→ 0, since the result is then a consequence of the Min-Max theorem: Denoting by
ψ0(~x) the ground state of the 3d harmonic oscillator − 1

2∆x + 1
2x

2, one has

〈ψ0|Γλ |ψ0〉 =
1

(4π)
3
2

{
1
2

+
∫ 1

0

dν
1

(1− ν)
3
2

[
1−

8
√

2νλ−1(1− ν)
3
2

[
(1 + 3ν2)| ln ν|+ 4ν(1− ν)

] 1
2

(1 + ν2)| ln ν|+ 1− ν2

]}
≤

c1 − c2

∫ 1/2

0

dν
νλ−1(ν + | ln ν|)

1 + | ln ν|
−→
λ→0

−∞.

The last inequality is proven by showing that the expectation value of the operator Γλ on any q⊥ belonging
to the subspace orthogonal to ψ0 remains bounded from below. Let then q⊥ be any normalized function
in D(Γλ) such that

〈
q⊥|ψ0

〉
= 0: We first notice that in the expectation value of Γλ (see also (2.2)),

we can restrict the integration in ν in aλ as well as in Gλ to the interval [0, e−1], since the remainder is
uniformly bounded in λ as λ→ 0. After the restriction we can expand the square |q⊥(~x)− q⊥(~x′)|, since
everything is now bounded, and exploit the cancellation to get

〈
q⊥

∣∣ Γλ
∣∣q⊥〉

≥
[
− c+

1
(4π)

3
2

∫ e−1

0

dν
1

(1− ν)
3
2

] ∥∥q⊥∥∥2

2
−

∫
R6

d~xd~x′ Ḡλ(~x, ~x; ~x′, ~x′)q⊥(~x)
∗
q⊥(~x′), (3.3)

where Ḡλ stands for the Green function (1.7) where the integration in ν has been restricted to [0, e−1].
The first term is again uniformly bounded whereas the only singular contribution is contained inside the
second term but it is multiplied by a projector onto the subspace spanned by ψ0: Denoting by kν(~x, ~x′)
the kernel

kν(~x; ~x′) = exp
{
− 1− ν

2(1 + ν)

(
x2 + x′

2
)
− (~x− ~x′)2

2| ln ν|
− ν (~x− ~x′)2

1− ν2

}
, (3.4)

one has∫
R6

d~xd~x′ Ḡλ(~x, ~x; ~x′, ~x′)q⊥(~x)
∗
q⊥(~x′) =

c

∫ e−1

0

dν
νλ−1

(1− ν2)
3
2 | ln ν| 32

∫
R6

d~xd~x′ kν(~x; ~x′)q⊥(~x)
∗
q⊥(~x′) ≤ c

∫ e−1

0

dν
νλ−1

(1− ν2)
3
2

〈
q⊥

∣∣ kν

∣∣q⊥〉
. (3.5)
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Note that we have used the restriction of the integration domain in order to estimate | ln ν| ≤ 1. On the
other hand one can easily prove the upper bound∣∣∣∣ ∫ e−1

0

dν νλ−1(1− ν2)−
3
2

〈
q⊥

∣∣ kν

∣∣q⊥〉
− π

3
2

〈
q⊥

∣∣ (Hosc + λ− 3/2)−1 ∣∣q⊥〉 ∣∣∣∣ ≤
c

∫ e−1

0

dν (1− ν2)−
3
2

∫
R6

d~xd~x′
[
k̄ν(~x; ~x′)− kν(~x; ~x′)

]
q⊥(~x)

∗
q⊥(~x′), (3.6)

where k̄ν stands for the kernel associated with the harmonic oscillator (see, e.g., [BC]),

k̄ν(~x; ~x′) = exp
{
− 1− ν

2(1 + ν)

(
x2 + x′

2
)
− ν (~x− ~x′)2

1− ν2

}
.

By using the bound

∣∣k̄ν(~x; ~x′)− kν(~x; ~x′)
∣∣ ≤ ∣∣∣∣1− exp

{
− (~x− ~x′)2

2| ln ν|

}∣∣∣∣ ≤ c
(~x− ~x′)2

| ln ν|
,

the above quantity can be easily estimated as follows

∫ e−1

0

dν (1− ν2)−
3
2

∫
R6

d~xd~x′
(
k̄ν(~x; ~x′)− kν(~x; ~x′)

)
q⊥(~x)

∗
q⊥(~x′) ≤

c

∫ e−1

0

dν (1− ν2)−
3
2

∫
R6

d~xd~x′ x2 k̄ν(~x; ~x′)
∣∣q⊥(~x)

∣∣ ∣∣q⊥(~x′)
∣∣ ≤

c
〈∣∣q⊥∣∣∣∣Hosc (Hosc + λ− 3/2)−1 ∣∣∣∣q⊥∣∣〉 ≤ c

∥∥q⊥∥∥2

2
.

Altogether (3.3), (3.5) and (3.6) imply

lim
λ→0

〈
q⊥

∣∣ Γλ
∣∣q⊥〉

≥ −c1
∥∥q⊥∥∥2

2
− c2 lim

λ→0

〈
q⊥

∣∣ (Hosc + λ− 3/2)−1 ∣∣q⊥〉
≥ −c

∥∥q⊥∥∥2

2
, (3.7)

since for any function q⊥ orthogonal to the ground state ψ0 of the harmonic oscillator〈
q⊥

∣∣ (Hosc + λ− 3/2)−1 ∣∣q⊥〉
≤ (λ+ 1)−1 ∥∥q⊥∥∥2

2
.

In conclusion the expectation value of Γλ in the subspace orthogonal to ψ0 is bounded from below and
then the last estimate is a straightforward consequence of the Min-Max theorem. 2

The spectral properties of the operator Hα follow from the above Proposition via the charge equation
(2.46):

Theorem 3.1 (Negative Spectrum of Hα) For any α ∈ R, the discrete spectrum σpp(Hα) is not
empty and contains a number N(α) of negative eigenvalues −E0(α) ≤ −E1(α) ≤ . . . ≤ 0. The corre-
sponding eigenvectors are given by

Ψn(~x, ~y) =
(
GEnqn

)
(~x, ~y), (3.8)

where qn is a solution to the homogeneous equation

αqn + ΓEnqn = 0. (3.9)

Moreover there exists α0 ∈ R such that, if α > α0, N(α) = 1 and N(α) ' c|α|6 as α→ −∞. The ground
state energy has the following asymptotic behavior: E0 ' cα−1 as α→ +∞ and E0 ' cα2 as α→ −∞.
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Proof: We first derive the integral equation equivalent to the eigenvalue problem. Let ΨE be a solution
to HαΨE = −EΨE , for some E > 0, by (2.44) this equation is equivalent to (H0 + E)φλ = (λ− E) Gλq
and the first resolvent identity yields φλ = GEq − Gλq, which implies ΨE = GEq.
On the other hand ΨE belongs to the domain of Γλ and has to satisfy the boundary condition (2.46), so
that

αq + ΓEq = 0. (3.10)

Therefore there is a one-to-one correspondence between the negative eigenvalues of Hα and non trivial
solutions to the homogeneous equation above. In other words −E is an eigenvalue of Hα, if and only if
0 is an eigenvalue of α+ ΓE .

All the remaining properties of the eigenvalues are direct consequences of Proposition 3.1.
For instance since the spectrum of ΓE is discrete, one can project (3.10) onto its eigenvectors and obtain
the algebraic equation

α+ γn(E) = 0. (3.11)

The eigenvalue equation is thus equivalent to find some n ∈ N and E > 0 solving the above equation.
Note that by the properties of γn and in particular limE→0 γ0(E) = −∞ and limn→∞ γn(E) = +∞,
there always is a solution to (3.11). On the other hand points (ii) and (iii) in Proposition 3.1 imply that
for any α > α0 = − infn>0 γn(0), there is only one solution to (3.11). Moreover the number N(α) of the
eigenvalues is bounded from below by the cardinality of the set {n ∈ N | γn(0) ≤ −α}, so that any upper
bound on γn(0) provides a lower bound for N(α). Due to the monotonicity in λ of γn(λ), (2.26), (2.3),
(2.31) and (2.32), one has the asymptotics 〈q|Γλ |q〉 ' 〈q|

√
Hosc |q〉 for large λ. We can then use the

eigenvalue distribution of the square root of the harmonic oscillator to estimate the asymptotics of N(α)
as α→ −∞.
In order to complete the asymptotic analysis for α→ +∞, it is sufficient to notice that the λ-dependence
of aλ implies γ0(λ) ' −cλ−1 as λ → 0, and then E0 = O(α−1) as α → +∞. Such an argument also
applies to the asymptotics α→ −∞ and, since γ0(λ) ' c

√
λ as λ→ +∞, E0 = O(α2) as α→ −∞. 2

An interesting consequence of the above Theorem is the existence of a bound state for any α ∈ R, in
particular even if α > 0 and there is no bound state for the “reduced” system, which is given by a particle
interacting with a fixed center. In this case the harmonic oscillator strength is assumed to be infinite, so
that the system becomes the one-particle model described by the formal hamiltonian − 1

2∆~x + “αδ(~x)”.
The associated self-adjoint extensions hα (see, e.g., [AGH-KH]) are labeled by a real parameter α ∈ R
and the spectrum σ(hα) is purely absolutely continuous if α ≥ 0. On the opposite Hα has at least one
bound state even if α ≥ 0 and this is due to the presence of the harmonic oscillator which compensates
the “repulsive” force of the zero-range interaction.

The positive part of σ(Hα) can be analysed by exploiting the explicit expression of the resolvent
(2.45).

Theorem 3.2 (Positive Spectrum of Hα) The essential spectrum of Hα is equal to [0,+∞) and
σess(Hα) = σac(Hα) = R+, i.e., the singular spectrum of Hα is empty.
The wave operators Ω±(Hω

α ,H
ω
0 ) exist and are complete.

Proof: We start by noticing that (2.45) can be rewritten by using (2.46) as

(Hα + λ)−1 − (H0 + λ)−1 = Gλ

(
α+ Γλ

)−1 G∗λ, (3.12)

where G∗λ : L2(R6) → L2(R3), G∗λ = P(H0 +λ)−1. Of course the above expression makes sense if and only
if α + Γλ is invertible. We fix then λ sufficiently large so that (α + Γλ)−1 exists and defines a bounded
operator.

Therefore in order to prove the first part of the Theorem, i.e., σess(Hα) = R+, it is sufficient to show
that the operator on the right side of (3.12) is a compact operator, since then the result is a consequence
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of Weyl’s Theorem (see Theorem XIII.14 in [RS4]). Such a result is actually a by-product of the stronger
statement

G∗λ (H0 + λ)−k Gλ ∈ Bp(L2(R3), L2(R3)), ∀p > 3
k + 1

2

, (3.13)

where k ∈ N and Bp stands for the Schatten ideal of order p. We refer to [S] and [CDF] for the theory of
Schatten ideals and the detailed proof of the above result respectively.
Now we claim that by (3.13) Gλ ∈ Bp(L2(R3), L2(R6)) with p > 12, since, setting k = 0 and using
Hölder inequality in Schatten ideals, (3.13) implies G∗λGλ ∈ Bp(L2(R3), L2(R3)), p > 6. Indeed denoting
by g2

n, n ∈ N, the singular values associated with G∗λGλ, one has {gn} ∈ `p for p > 6 and by a standard
argument (see, e.g., the proof of Theorem VI.17 in [RS1]), one can show that {gn} are the singular values
of Gλ, which yields the result. Note that this also implies that G∗λ ∈ Bp(L2(R6), L2(R3)), p > 6 and both
operators are compact. Since (Γλ +α)−1 is a bounded operator, by Hölder inequality Gλ(Γλ +α)−1G∗λ ∈
Bp(L2(R6), L2(R3)) with p > 6 and in particular it is a compact operator.

Moreover (3.13) can be used to show that [(Hα + λ)−1]4 − [(H0 + λ)−1]4 is a trace class operator
for some λ > 0 and existence and completeness of wave operators are thus proven as in Corollary 3 of
Theorem XI.11 in [RS3]: The explicit computation of the above difference yields

[(Hα + λ)−1]4 − [(H0 + λ)−1]4 =
′∑

1≤m≤4

(
Gλ(Γλ + α)−1G∗λ

)m
(H0 + λ)−4+m

, (3.14)

where the ′ in the sum denotes the fact that it contains several copies of the same product term where
the order of the single factors are exchanged. It is however clear that irrespective of the order of factors,
one can apply Hölder inequality together with (3.13) (taking k = 3) to any term in the above expression
and show that it is a trace class operator.

In order to conclude the proof, we have to show that σsing(Hα) = ∅, i.e., the operator has no singular
continuous spectrum, but this can be proven by using the limiting absorption principle (see, e.g., Theorem
XIII.19 in [RS4]), i.e., by showing that for any interval [a, b] ⊂ R+,

sup
0<ε<1

∫ b

a

dλ
∣∣∣= 〈Ψ| (Hα − λ+ iε)−1 |Ψ〉

∣∣∣p <∞, (3.15)

for any Ψ ∈ L2(R6) and some 1 < p <∞. First of all we notice that the definition (2.45) together with
(2.46) can be easily extended to any λ ∈ Z \ R and in particular to λ± iε: A simple computation gives

= 〈Ψ| (Hα − λ+ iε)−1 |Ψ〉 = = 〈Ψ| (H0 − λ+ iε)−1 |Ψ〉+ = 〈q|Γ−λ+iε |q〉 ,

where q ∈ D(Γλ) solves (2.46). On the other hand the operator H0 certainly satisfies (3.15) because
σ(H0) = σac(H0) = R+ (see, e.g., Theorem XIII.20 in [RS4]). Therefore by restricting the analysis to
any 1 < p ≤ 2, we find that it suffices to show that

sup
0<ε<1

∫ b

a

dλ
∣∣= 〈q|Γ−λ+iε |q〉

∣∣p <∞, (3.16)

for any 1 < p ≤ 2 and q ∈ D(Γλ). Now by (2.42), (2.3) and (2.19), one has

= 〈q|Γ−λ+iε |q〉 = −
∫

R6
d~xd~x′ q∗(~x′)= [G−λ+iε(~x, ~x; ~x′, ~x′)] q(~x).

Note that because of the cancellation of the singular term in aλ, the above quantity is well defined.
Moreover it can be rewritten by using an alternative expression (see also [CDF]) for the “free” Green
function, i.e.,

Gλ(~x, ~y; ~x′, ~y′) =
1

4π3

∑
~n∈N3

∫
R3

d~k
ei~k·(~x′−~x)

k2 + 2n+ 2λ
ψ~n(~y)ψ~n(~y′),
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where ψn is the n−th eigenfunction of the 3d harmonic oscillator and we have used the notation ~n =
(n1, n2, n3) and n = n1 + n2 + n3. It is then easy to calculate

∣∣= 〈q|Γ−λ+iε |q〉
∣∣ = ε

∑
~n∈N3

∫
R3

d~k
|q̃~n(~k)|2

(k2 + 2n− 2λ)2 + ε2
, (3.17)

where q̃~n(~k) stands for the Fourier transform of the product q(~x)ψ~n(~x). In order to simplify the proof we
decompose the sum in the above expression into two terms, i.e.,

∑
~n∈N3

∫
R3

d~k
|q̃~n(~k)|2

(k2 + 2n− 2λ)2 + ε2
≤

∑
n≤[a]

∫
R3

d~k
|q̃~n(~k)|2

(k2 + 2n− 2λ)2 + ε2
+

∑
n>[a]

∫
R3

d~k
|q̃~n(~k)|2

k4 + ε2
,

where we denoted by [a] the integer part of a. Using the completeness of the harmonic oscillator eigen-
functions one can show that

∑
~n∈N3 |q̃~n(~k)|2 = ‖q‖2

2. On the other hand Cauchy-Schwarz inequality and
normalization of ψn give the pointwise estimate9 |q̃~n(~k)| ≤ ‖q‖2. The estimate (3.17) finally becomes

∣∣= 〈q|Γ−λ+iε |q〉
∣∣ ≤ cε

[ ∫
R3

d~k
1

(k2 + 2[a]− 2λ)2 + ε2
+

1√
ε

]
‖q‖2

2 ≤

c

[
π√
2

(
1− 2(λ− [a])√

4(λ− [a])2 + ε2

) 1
2

+
√
ε

]
≤ c,

which implies the result. 2
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