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RIEMANNIAN ANALOGUE OF
A PALEY-ZYGMUND THEOREM

NIKOLAY TZVETKOV

1. Presentation of the results

In this exposé we present two recent works of the author on random series.
The first is in collaboration with A. Ayache [1] and concerns Lp properties
while the second one, in collaboration with S. Grivaux [3], is devoted to
continuity results (roughly Lp with p→∞). This work also benefited from
discussions I had with K. Tzanev.

I am grateful to F. Golse for the kind invitation to give a talk at the
February 2009 session of the seminar X-EDP.

1.1. A Paley-Zygmund theorem. Let f ∈ L2(S1), S1 = R/(2πZ). Then
there exists a sequence (cn)n∈Z ∈ l2(Z) such that

(1) f(x) =
∑
n∈Z

cne
inx .

It is a very natural question to find under what kind of assumptions on the
sequence (cn)n∈Z the series (1) defines a continuous function on the circle S1

(or a Lp, p > 2 function). Such kind of conditions are given by the Sobolev
embedding theorems. Define for s ≥ 0, the Sobolev space Hs(S1) via the
norm

‖f‖2
Hs(S1) =

∑
n∈Z

(1 + |n|)2s|cn|2 .

Of course H0(S1) = L2(S1) and for s1 > s2, Hs1(S1) ⊂ Hs2(S1) with a
continuous embedding. We have the following statement.

Theorem 1 (Sobolev embeddings). If f ∈ Hs(S1) for some s > 1/2, then
f ∈ C(S1). If for p ∈ [2,∞), f ∈ H1/2−1/p(S1) then f ∈ Lp(S1). In
particular, if f ∈ H1/2(S1) then for every p ∈ [2,∞), f ∈ Lp(S1). The
restriction on the Sobolev regularity is optimal (for example there exists
f ∈ H1/2(S1) which is not in C(S1)).

Thanks to a remarkable work by Paley-Zygmund [6], the conditions on f
in Theorem 1 can be strongly relaxed if one allows random variations of the
signs of the coefficients cn. For instance, for any f ∈ L2(S1), given by (1),
the expression

(2)
∑
n∈Z

±cneinx

belongs to any Lp(S1), 2 ≤ p < ∞ for almost all choices of the signs ±. A
rigorous way to define (2) is to see it as a L2(S1) random variable defined
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by the map ω 7→ F (ω, x) from a probability space (Ω,P,A) to L2(S1) as

F (ω, x) =
∑
n∈Z

hn(ω)cneinx ,

where (hn)n∈Z is a system of independent Bernoulli random variables on a
probability space (Ω,P,A) (i.e. taking values ±1 with equal probability).
We have that F (ω, x) is a priori defined as an element of L2(Ω×S1) and the
issue is to find better regularity properties of this object. Here is a precise
statement.

Theorem 2 (Paley-Zygmund). If f ∈ L2(S1) is defined by (1) then for all
2 ≤ p < ∞, F (ω, x) ∈ Lp(S1) almost surely (a.s) in ω. If f ∈ L2(S1) is
defined by (1) with (cn) satisfying for some α > 1∑

n∈Z
(log(1 + |n|))α|cn|2 <∞

then F (ω, x) ∈ C(S1) a.s. in ω. Moreover the restriction α > 1 is sharp in
the sens that there exists a sequence (cn)n∈Z such that∑

n∈Z
log(1 + |n|)|cn|2 <∞

but (2) defines a continuous function for no choice of the signs ±.

One may also show a.s. uniform convergence of the partial sums. We
will not insist here on these aspects (essentially due to Kolmogorov) of the
analysis. The optimality of the restriction α > 1 follows from the fact that
3n, n = 0, 1, 2, 3 · · · is a Sidon set in Z, a fact which can be easily proved by
a use of Riesz products.

1.2. A generalization on a Riemannian manifold. The discussion of
the previous section essentially asserts that the Paley-Zygmund theorem
gains a.s. a half derivative with respect to the Sobolev embedding at L∞

level. Indeed the Sobolev embedding condition is that ∼ 1/2 derivatives of
f belong to L2 while the restriction in Theorem 2 implies that the function
f is in all Hs(S1), s > 0. It turns out that this phenomenon has a natural
extension if we replace S1 by a compact Riemannian manifold (M,m) and
(einx)n∈Z by an orthonormal basis of L2(M) formed by eigenfunctions of the
Laplace-Beltrami operator ∆m associated to the metric m. This phenom-
enon, combined with some “deterministic analysis”, was recently exploited
by N. Burq and the author in the analysis of wave equations with data of
super-critical regularity [2].

Let (M,m) be a d-dimensional smooth, compact, boundaryless Riemann-
ian manifold. This means that we consider a compact boundaryless differ-
entiable manifold, such that the tangent space TxM at each point of x ∈M
is equipped with a scalar product which depends smoothly when one varies
the point x. The Laplace-Beltrami operator ∆m : C∞(M) → C∞(M) is
defined by ∆m(f) ≡ div(∇mf), where ∇m is the Riemannian gradient (i.e.
〈∇mf, h〉g = df ·h,∀h ∈ TM) and div denotes the divergence of a vector field
on M associated to the volume element induced by m. The operator ∆m

is a symmetric, negative operator with respect to the L2(M) scalar product
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and admits a self-adjoint realization with domain the Sobolev space H2(M).
Moreover, since M is compact, thanks to the Reilich theorem (i + ∆m)−1

is a compact operator and thus ∆m has a discrete spectrum with no finite
accumulation point. We denote by (ϕλn)n∈N an orthonormal basis of L2(M)
formed by eigenfunctions of −∆m associated to eigenvalues (λ2

n)n∈N respec-
tively with 0 = λ2

0 < λ2
1 ≤ λ2

2 ≤ · · · (the constants build the eigenspace
associated to λ0). These eigenvalues λn are counted with multiplicities. In
local coordinates ∆m is a second order elliptic operator. In the context of
the circle S1, one simply has ∆m = d2

dx2 and the sequence of eigenvalues is

0 < 1 = 1 < 4 = 4 < 9 = 9 < 16 = 16 < 25 = 25 < · · ·

We now repeat the discussion of the previous section by replacing the
corresponding objects. Let f ∈ L2(M). Then there exists a sequence
(cn)n∈N ∈ L2(N) such that

(3) f(x) =
∑
n∈N

cnϕλn(x) .

We say that f belongs to the Sobolev space Hs(M) if ‖f‖Hs(M) is finite,
where

‖f‖2
Hs(M) =

∑
n∈N

(1 + λn)2s|cn|2 .

One may show that Hs(M) is independent of the choice of the bases ϕλn ,
and even independent of the choice of the metric m. We now state the
counterpart of Theorem 1 in our new context.

Theorem 3 (Sobolev embeddings). If f ∈ Hs(M) for some s > d/2, then
f ∈ C(M). If for p ∈ [2,∞), f ∈ Hd/2−d/p(S1) then f ∈ Lp(M). As in
Theorem 1 the restrictions on the Sobolev regularity are optimal.

Now for f ∈ L2(M) defined by (3), we define the random series F by

(4) F (ω, x) =
∑
n∈N

hn(ω)cnϕλn(x) ,

where again (hn)n∈Z is a system of independent Bernoulli random variables.
Here is our Lp riemannian Paley-Zygmund theorem.

Theorem 4 (a.s. improvement of the Sobolev embeddings). Let p ∈ [2,∞).
Suppose that there exist C > 0 and δ(p) ≥ 0 such that for every n,

(5) ‖ϕλn‖Lp(M) ≤ Cλδ(p)
n

Then the following holds true. If f ∈ L2(M), defined by (3) belongs to
Hδ(p)(M) then F (ω, x) ∈ Lp(M) a.s in ω.

In the case when M is a flat d-dimensional torus, the estimate (5) holds
with δ(p) = 0 if one considers the “usual” basis of the exponentials. Thus
we extend the result of Theorem 2 to the higher dimensional torus. Thanks
to the work by Sogge [7], estimate (5) is known to hold with

δ(p) =

{
d−1
4 − d−1

2p , 2 ≤ p ≤ 2(d+1)
d−1

d−1
2 − d

p ,
2(d+1)

d−1 ≤ p ≤ ∞.
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Therefore Theorem 4 displays a gain of 1/2 derivatives with respect to the
Sobolev embedding, for p ≥ 2(d + 1)/(d − 1). Indeed, in order to ensure
that a function f belongs to Lp(M) the Sobolev embedding requires that
f ∈ Hd/2−d/p(M) while combining Theorem 4 and the Sogge estimates
the randomisation F (ω, x) of a function f belongs to Lp(M) a.s. provided
f ∈ Hd/2−d/p−1/2(M), i.e. a half derivative less then the deterministic re-
sult ! In the case 2 ≤ p ≤ 2(d + 1)/(d − 1) the gain with respect to the
Sobolev embedding is d+1

2 (1
2 −

1
p), a positive number ≤ 1/2 in the consid-

ered range for p.

We next turn to our C(M) riemannian Paley-Zygmund theorem.

Theorem 5. Suppose that there exist C > 0 and β ≥ 0 such that for every
n, every x, y ∈M ,

(6) |ϕλn(x)| ≤ C(1 + λn)β , |ϕλn(x)− ϕλn(y)| ≤ C(1 + λn)β+1d(x, y),

where d(x, y) denotes the geodesic distance on M between x and y. Then
the following holds true. If f ∈ L2(M), defined by (3) satisfies for some
α > 1, ∑

n∈N
λ2β

n (log(1 + λn))α|cn|2 <∞

then F defined by (4) satisfies F (ω, x) ∈ C(M) a.s in ω.

Again, in the case when M is a flat d-dimensional torus with the ϕn the
exponentials, the estimate (6) holds with β = 0. We can also show that (6)
holds on any manifold M with β = d−1

2 and thus we obtain the following
statement.

Corollary 6. If f ∈ L2(M), defined by (3) satisfies for some α > 1,

(7)
∑
n∈N

λd−1
n (log(1 + λn))α|cn|2 <∞

then F defined by (4) satisfies F (ω, x) ∈ C(M) a.s in ω.

Again, we observe ∼ 1/2 derivatives gain with respect to the Sobolev
embedding restriction ensuring continuity which is essentially speaking (7)
where d− 1 is replaced by d.

If one considers the case of the standard sphere one may obtain that (7)
is nearly optimal by considering zonal eigenfunctions. It should be however
pointed out that at the present moment my understanding on the optimality
of the restriction α > 1 even in the case of the sphere is very poor. It seems
to be an interesting problem.

1.3. A link with a result of Marcus-Pisier. Our approach can be ap-
plied to give some concrete criteria for the almost sure continuity of random
series on compact Lie groups, the context being the one considered by Mar-
cus and Pisier in [5] that we recall now.

Let G be a compact Lie group of dimension d. This means that G is a
group having a structure of differentiable manifold so that the group op-
erations are smooth. Denote by µ the Haar measure on G. Since G is
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compact this measure is bi-invariant. Moreover it is unique up to a mul-
tiplicative constant. We set L2(G) = L2(G, dµ) and we fix µ so that the
volume of G is one. Since L2(G) is separable, the set of equivalence classes
of irreducible unitary representations of G is countable. Denote by (πi)∞i=1 a
sequence describing all irreductible, unitary non-equivalent representations
of G. Suppose that πi : G → Hi, where Hi a Hilbert space with a scalar
product 〈·, ·〉. Thanks to the Peter-Weyl theorem Hi is finite dimensional,
say of

dimension di, and if (ei1, · · · , eidi
) is an orthonormal bases of Hi then the

family of functions on G

ϕi
j,k(g) =

√
di〈πi(g)eij , e

i
k〉, 1 ≤ j, k ≤ di, i = 1, 2, · · ·

is an orthonormal basis of L2(G).

We now repeat for a third time the discussion of the previous sections by
replacing the corresponding objects. Let f ∈ L2(G). Then there exists cij,k,
i ∈ N, 1 ≤ j, k ≤ di such that

(8) f(g) =
∞∑
i=1

di∑
j,k=1

cij,kϕ
i
j,k(g) =

∞∑
i=1

Tr
(
(ϕi

j,k(g))
di
j,k=1

(
(cij,k)

di
j,k=1

)t)
.

The result of the previous section applies to the randomisation

(9)
∞∑
i=1

di∑
j,k=1

hi
j,k(ω)cij,kϕ

i
j,k(g),

where hi
j,k is a family of standard Bernoulli random variables. Let us now

describe the randomisation used by Marcus-Pisier in [5] which is slightly
different from (9). For i = 1, 2, · · · , we define the random matrix Hi(ω)
as Hi(ω) = ( 1√

di
hi

j,k(ω))di
j,k=1, where the hi

j,k is again a family of standard
Bernoulli random variables. We consider the left randomisation of f , defined
by

(10) F (g, ω) =
∞∑
i=1

Tr
(
Hi(ω)(ϕi

j,k(g))
di
j,k=1

(
(cij,k)

di
j,k=1

)t)
.

One can analyse similarly the right randomisation but we skip this consider-
ations. Observe that ‖F‖L2(G×Ω) = ‖f‖L2(G) which “explains” the presence
of the factor 1√

di
in the definition of the matrix Hi. We have the following

statement.

Theorem 7 (Marcus-Pisier). The random function F (g, ω) belongs to C(G)
a.s. in ω if and only if ∫ ∞

0

(
log(N(ε))

)1/2
dε <∞,

where N(ε) is the entropy number associated to the pseudo-distance on G,
defined by

d2(g1, g2) =
∑
i≥1

Tr
∣∣∣(ϕi

j,k(g1)− ϕi
j,k(g2))

di
j,k=1

(
(cij,k)

di
j,k=1

)t∣∣∣2 .
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A very natural question is to find criteria in the spirit of the Paley-
Zygmund result ensuring that F (g, ω) ∈ C(G) a.s. in ω. Here we propose
one such criterion which will recover the result of Theorem 1 as a particular
case.

Since G is compact there exists a riemannian bi-invariant metric on G.
Let us denote by m one such metric which makes that (G,m) becomes
a riemannian manifold. We denote by ∆m the Laplace-Beltrami operator
associated to the metric m. Let us define the left and right regular repre-
sentations of G on L2(G) by

L(g)(u(x)) = u(g−1x), R(g)(u(x)) = u(xg), g, x ∈ G, u ∈ L2(G) .

Since m is bi-invariant, the left and right multiplications on G are isometries
for m. Using that the Laplace-Beltrami operator is invariant by isometries,
we obtain that for every g ∈ G,

∆mL(g) = L(g)∆m, ∆mR(g) = R(g)∆m .

Therefore the restrictions of L(g) and R(g) to the eigenspaces of ∆m are
finite dimensional representations of G. By considering the decompositions
of these representations into irreductible representations we obtain that for
every i = 1, 2, · · · there exists νi ≥ 0 such that

−∆m(ϕi
j,k) = νiϕ

i
j,k, 1 ≤ j, k ≤ di .

Here is our riemannian Paley-Zygmund theorem in the context of the Marcus-
Pisier analysis.

Theorem 8. If f ∈ L2(G), defined by (8) satisfies for some α > 1,

(11)
∞∑
i=1

(1 + νi)d−1(log(1 + νi))α
di∑

j,k=1

|cij,k|2 <∞

then F defined by (10) satisfies F (g, ω) ∈ C(G) a.s in ω.

One can prove a result in the spirit of Theorem 4 concerning the Lp(G)
properties of F (g, ω). Observe that the condition on f(g) is the same as
if we consider the randomisation of the previous section given by (9). One
may show that the set of functions f satisfying conditions of type (11) is
independent of the choice of the metric m (but the random function F (ω, x)
constructed from f is dependent of the choice of the bases of L2(G) and
thus of the metric).

2. Proof of the Lp(M) theorem

In this section, we give the proof of Theorem 4 by invoking the argument
of [1] in the considered setting. The starting point is the following classical
Lp − L2

inequality of Khinchin which contains the whole benefit if the considered
randomisation.
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Lemma 9. There exists C > 0 such that for every p ≥ 2, every sequence of
complex numbers (cn) ∈ l2,

(12) ‖
∑

n

cnhn(ω)‖Lp(Ω) ≤ C
√
p‖
∑

n

cnhn(ω)‖L2(Ω) = C
√
p
(∑

n

|cn|2
) 1

2
.

One may wish to see the estimate of Lemma 9 is a consequence of a
hypercontractivity property associated to a suitable semi-group. Such hy-
percontractivity bounds have the advantage to give estimates in the spirit
of (12) for the Lp norms of the sum of products of independent Bernouli
random variables.

Proof of Lemma 9. Since the claimed inequality is invariant under a multi-
plication of (cn) by a constant, we can assume that

∑
n |cn|2 = 1. Estimate

(12) is a consequence of the large deviation bound

(13) p(ω : |
∑

n

cnhn(ω)| > λ) ≤ C exp(−cλ2),

for some positive constants C and c independent of λ ≥ 0 and (cn) satisfying∑
n |cn|2 = 1. Let us first show that (13) implies (12). Using (13) we get

‖
∑

n

cnhn(ω)‖p
Lp(Ω) ≤ C

∫ ∞

0
λp−1e−cλ2

dλ

= C

∫ ∞

0
e(p−1) log λ−cλ2

dλ

≤ (C
√
p)p ,

where in the last inequality we applied (for instance) the Laplace asymp-
totics, the constant C being independent of p. Therefore (13) implies (12).
Let us now prove (13). By separating the real and the imaginary part we
may assume that cn are real. By changing cn with −cn, we only need to
evaluate the probability p(ω :

∑
n cnhn(ω) > λ). By using the independence

of hn and using the inequality ch(x) ≤ ex
2/2 for every x ∈ R, we may write

for t > 0, ∫
Ω
et

P
n cnhn(ω)dp(ω) =

∏
n

ch(tcn) ≤ et
2/2 .

Therefore, by the Chebishev inequality

p(ω :
∑

n

cnhn(ω) > λ) ≤ et
2/2−tλ.

We take t = λ in the above inequality which proves (13). This completes
the proof of Lemma 9. �

Let us now give the proof of Theorem 4. Thanks to Lemma 9, we obtain
that for a fixed x ∈M ,

‖F (·, x)‖Lp(Ω) ≤ C
√
p
( ∞∑

n=0

|cn|2|ϕn(x)|2
) 1

2
.
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Therefore, using the triangle inequality and the Fubini theorem, we get

‖F‖Lp(Ω×M) ≤ C
√
p
∥∥∥( ∞∑

n=0

|cn|2|ϕn(x)|2
) 1

2
∥∥∥

Lp(M)

= C
√
p
∥∥∥ ∞∑

n=0

|cn|2|ϕn(x)|2
∥∥∥ 1

2

Lp/2(M)

≤ C
√
p
( ∞∑

n=0

|cn|2‖ϕn‖2
Lp(M)

) 1
2

≤ C
√
p
( ∞∑

n=0

|cn|2λ2δ(n)
n

) 1
2

≤ C
√
p‖f‖Hδ(p)(M) <∞ .

Therefore F (ω, x) ∈ Lp(M) a.s. in ω. This completes the proof of Theo-
rem 4.

3. Proof of the C(M) theorems

We shall use the following consequence of Lemma 9.

Lemma 10. There exists a positive constant C such that the following holds
true. If for N ≥ 2, X1, · · ·XN are random variables in L2(Ω), defined by

Xk(ω) =
∑

n

cn,khn(ω), 1 ≤ k ≤ N

then

(14) ‖ sup
1≤k≤N

|Xk(ω)|‖L1(Ω) ≤ C
√

logN sup
1≤k≤N

‖Xk‖L2(Ω) .

Let us remark that inequality (14) holds also for N = 1 with C
√

logN
replaced by 1.

Proof of Lemma 10. Write for p ≥ 1

‖ sup
1≤k≤N

|Xk(ω)|‖p
L1(Ω)

≤ ‖ sup
1≤k≤N

|Xk(ω)|‖p
Lp(Ω)

=
∫

Ω
sup

1≤k≤N
|Xk(ω)|pdω

≤
N∑

k=1

‖Xk‖p
Lp(Ω)

≤ N sup
1≤k≤N

‖Xk‖p
Lp(Ω) .

By invoking Lemma 9, we further get

‖ sup
1≤k≤N

|Xk(ω)|‖L1(Ω) ≤ N
1
p sup

1≤k≤N
‖Xk‖Lp(Ω) ≤ CN

1
p
√
p sup

1≤k≤N
‖Xk‖L2(Ω) .

Optimizing a little in p, we get that for p = 2 logN , N ≥ 2,

‖ sup
1≤k≤N

|Xk(ω)|‖L1(Ω) ≤ C
√

logN sup
1≤k≤N

‖Xk‖L2(Ω).

This completes the proof of Lemma 10. �
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Next, we define a pseudo-distance δ (depending on f) on M by

(15) δ(x, y) ≡ ‖F (ω, x)−F (ω, y)‖L2(Ω) =
(∑

n

|cn|2 |ϕλn(x)−ϕλn(y)|2
)1/2

.

Denote by d the distance on M induced by the riemannian metric m. For
α > 1, let us define the function Φα : (0,∞) → (0,∞) by

Φα(t) = (− log(t))α/2

for t ∈ (0, 1/a] and Φα(t) = Φα(1/a) for t ≥ 1/a, where a > 1 is chosen in
a way so that the function t 7−→ tΦα(t) is increasing on (0,+∞). Observe
that Φα is non-increasing on (0,+∞). The next step toward the proof of
Theorem 5 is the following lemma which relates the pseudo-distance δ to
the distance d.

Lemma 11. Under the assumption of Theorem 5, there exists a positive
constant C such that for every x, y ∈M ,

(16) δ(x, y) ≤ C

Φα(d(x, y))
,

where δ is defined by (15). In particular (16) implies that for a fixed y ∈M ,
the function on M defined by x 7→ δ(x, y) is continuous.

Proof. Write

(δ(x, y))2 =
∞∑

n=0

|cn|2|ϕλn(x)− ϕλn(y)|2 ≡ I(x, y) + II(x, y) ,

where

I(x, y) =
∑

n : a(1+λn)≤(d(x,y))−1

|cn|2|ϕλn(x)− ϕλn(y)|2

and

II(x, y) =
∑

n : a(1+λn)>(d(x,y))−1

|cn|2|ϕλn(x)− ϕλn(y)|2 .

We estimate separately I(x, y) and II(x, y). Using our assumption (6), we
get

I(x, y) ≤ C
∑

n : a(1+λn)≤(d(x,y))−1

|cn|2((1 + λn)1+βd(x, y))2

=
C

Φ2
α(d(x, y))

∑
n : a(1+λn)≤(d(x,y))−1

|cn|2(1 + λn)2+2β (d(x, y)Φα(d(x, y)))2 .

Since the function t 7−→ tΦα(t) is increasing, if n is such that d(x, y) ≤
1/(a(1 + λn)) we have

(d(x, y)Φα(d(x, y)))2 ≤ C

(
1

a(1 + λn)

)2

(log(1 + λn))α .

This yields the following estimate for the term I(x, y):

I(x, y) ≤ C

Φ2
α(d(x, y))

∑
n : a(1+λn)≤(d(x,y))−1

|cn|2(1 + λn)2β
(
log(1 + λn)

)α
.
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Let us next analyse II(x, y). Another use of our assumption (6) yields

II(x, y) ≤ C
∑

n : a(1+λn)>(d(x,y))−1

|cn|2(1 + λn)2β .

Since Φα is non-increasing, we infer that for n such that a(1 + λn) >
(d(x, y))−1,

Φα(d(x, y)) ≤ Φα

( 1
a(1 + λn)

)
≤ C(log(1 + λn))α/2 .

We thus obtain that

II(x, y) ≤ C

Φ2
α(d(x, y))

∑
n : a(1+λn)>(d(x,y))−1

|cn|2(1 + λn)2β(log(1 + λn))α .

Since by our assumption, the series∑
n

|cn|2(log(1 + λn))α(1 + λn)2β

converges, putting together the estimates on I(x, y) and II(x, y) yields the
required inequality. This completes the proof of Lemma 11. �

For every ε > 0 we denote by Nδ(ε,M) the minimal number of open balls
of radius ε for the pseudo-distance δ which are needed to cover M . Then
the entropy integral is defined by

J(δ,M) =
∫ +∞

0

√
log(Nδ(ε,M))dε.

We will use the following consequence of Lemma 10.

Lemma 12 (Dudley criterion). If J(δ,M) is finite then F (ω, x) ∈ C(M)
a.s. in ω.

Proof. In this proof, we are inspired by [4]. For j ≥ 1, we define Nj as
Nj = Nδ(2−j ,M). Let Rj be a family of points of M forming a 2−j-net of
(M, δ), i.e. the δ open balls of radius 2−j centered at the points of Rj cover
M (these balls are open sets of M thanks to Lemma 11). Let (uj

a)a∈Rj be a
partition of the unity such that

supp(uj
a) ⊆ (x ∈M : δ(a, x) < 2−j), ∀ a ∈ Rj .

Set
Fj(ω, x) =

∑
a∈Rj

uj
a(x)F (ω, a) .

The proof will be done by showing that the random variables Fj converge
both in L2(Ω;L2(M)) and L1(Ω;C(M)), and then identifying the limits.

We first show the convergence of Fj to F in L2(Ω;L2(M)). We have that

‖Fj(ω, x)− F (ω, x)‖L2(Ω) ≤
∑
a∈Rj

uj
a(x)‖F (ω, a)− F (ω, x)‖L2(Ω) .

Moreover uj
a(x) = 0 for ‖F (ω, a)− F (ω, x)‖L2(Ω) ≥ 2−j . Therefore

‖Fj − F‖L2(Ω;L2(M)) ≤ (vol(M))
1
2 2−j
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which proves that Fj converges to F in L2(Ω;L2(M)).

We next prove that Fj converges to some limit in L1(Ω;C(M)). Define
the random variable Mj by

Mj(ω) = sup
(a,b)∈Ej

|F (ω, a)− F (ω, b)|,

where
Ej = {(a, b) ∈ Rj ×Rj+1 : δ(a, b) < 2−(j−1)}.

We have

|Fj(ω, x)− Fj+1(ω, x)| ≤
∑

(a,b)∈Rj×Rj+1

uj
a(x)u

j+1
b (x)|F (ω, a)− F (ω, b)|

≤
∑

(a,b)∈Rj×Rj+1

uj
a(x)u

j+1
b (x)Mj(ω) ≤Mj(ω),

where we have made use of the fact that if (a, b) ∈ Rj×Rj+1 and uj
a(x)u

j+1
b (x)

is non zero then δ(a, b) < 2−j + 2−(j+1) ≤ 2−(j−1), i.e. (a, b) ∈ Ej . Hence

sup
x∈M

|Fj(ω, x)− Fj+1(ω, x)| ≤Mj(ω)

a.s. in ω ∈ Ω. Thus, using Lemma 10 and the definition of δ, we get

‖Fj − Fj+1‖L1(Ω;C(M)) ≤ ‖Mj‖L1(Ω)

≤ C
√

log(|Ej |+ 1) sup
(a,b)∈Ej

‖F (ω, a)− F (ω, b)‖L2(Ω)

= C
√

log(|Ej |+ 1) sup
(a,b)∈Ej

δ(a, b) .

This yields

‖Fj − Fj+1‖L1(Ω;C(M)) ≤ C 2−j
√

log(NjNj+1 + 1)

≤ C 2−(j+1)
√

log(Nj+1 + 1) .

Summing over j ≥ 1 yields∑
j≥1

‖Fj − Fj+1‖L1(Ω,C(M)) ≤ C1 + C2

∑
j≥1

2−j
√

logNj

for some positive constants C1 and C2. Coming back to the definition of the
entropy we get

J(δ,M) ≥ C
∑
j≥1

2−j
√

logNj ,

and thus the finiteness of the entropy integral implies that the series∑
j≥1

‖Fj − Fj+1‖L1(Ω,C(M))

converges. This shows that (Fj) converge to a certain limit in L1(Ω, C(M)).
Using the L2(Ω, L2(M)) convergence allows to identify this limit as F . This
completes the proof of Lemma 12. �
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Recall that we denote by d the distance on M induced by the riemannian
metric m. Denote by Nd(ε,M) the entropy number with respect to the
distance d. Then there exists a positive constant C such that for every
ε > 0,

(17) Nd(ε,M) ≤ Cε−d .

Let us now complete the proof of Theorem 5. We plan to apply Lemma 12.
Observe that we only need to study the convergence of the entropy integral
for ε near zero. Indeed thanks to our assumption (6), we have that δ(x, y)
remains bounded for x, y ∈ M . Therefore the integration in the expression
defining the entropy integral is in fact on a compact set (Nδ(ε,M) = 1 for
ε� 1). Using the monotonicity of Nδ(ε,M) with respect to ε, we infer that
indeed it suffices to study the convergence of the entropy integral for ε near
zero. Thanks to Lemma 11

(18) Φα(d(x, y)) ≥ C

ε
=⇒ δ(x, y) ≤ ε.

Coming back to the definition of Φα, we obtain that for ε sufficiently small,

(19) d(x, y) ≤ e−
(

C
ε

) 2
α

=⇒ Φα(d(x, y)) ≥ C

ε
.

Combining (18) and (19), we get

Nδ(ε,M) ≤ Nd

(
e−
(

C
ε

) 2
α

,M
)
.

Using (17), we get that if ε is sufficiently small,√
logNδ(ε,M) ≤

(C
ε

) 1
α

which is integrable near the point 0 thanks to the assumption α > 1. There-
fore Lemma 12 applies which completes the proof of Theorem 5. �

Let us make a remark. The proof of Lemma 12 uses a decomposition in the
physical space. This lemma then implies Theorem 5 and Corollary 6. The
condition imposed on f in Corollary 6 involves only its spectral decomposi-
tion. It would be interesting to find a proof of Corollary 6 by decompositions
in the frequency space only.

We now give the proof of Theorem 8 which is very similar to that of
Theorem 5. Again, we shall use Lemma 12. Coming back to (10), we write

F (g, ω) =
∑
i≥1

d
−1/2
i

di∑
j,k,l=1

ϕi
j,k(g)c

i
l,kh

i
l,j(ω)

=
∑
i≥1

d
−1/2
i

di∑
j,l=1

(
di∑

k=1

ϕi
j,k(g)c

i
l,k

)
hi

l,j(ω).
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Recall that for almost every ω ∈ Ω, F (g, ω) belongs to L2(G). Indeed

‖F‖2
L2(Ω×G) =

∑
i≥1

d−1
i

di∑
j,l=1

∥∥∥ di∑
k=1

ϕi
j,k(g)c

i
l,k

∥∥∥2

L2(G)

=
∑
i≥1

d−1
i

di∑
j,l=1

di∑
k=1

|cil,k|2

=
∑
i≥1

di∑
k,l=1

|cik,l|2

which is finite since f ∈ L2(G). The expression of F (g, ω) shows that we can
apply the criterion of Lemma 12, and that F (g, ω) will coincide a.s. with a
continuous function on G as soon as J(δ,G) is finite, where J(δ,G) is the
entropy integral associated to the pseudo-distance (depending on f) δ on G
defined by

δ(g, h) = ‖F (g, ω)− F (h, ω)‖L2(Ω)

=
(∑

i≥1

d−1
i

di∑
j,l=1

∣∣∣ di∑
k=1

cil,k

(
ϕi

j,k(g)− ϕi
j,k(h)

)∣∣∣2) 1
2
.

As in the proof of Theorem 5, we introduce the real function Φα(t) and we
split δ2(g, h) = I(g, h) + II(g, h) , where

I(g, h) =
∑

i : a(1+νi)≤(d(g,h))−1

d−1
i

di∑
j,l=1

∣∣∣ di∑
k=1

cil,k

(
ϕi

j,k(g)− ϕi
j,k(h)

)∣∣∣2
and

II(g, h) =
∑

i : a(1+νi)>(d(g,h))−1

d−1
i

di∑
j,l=1

∣∣∣ di∑
k=1

cil,k

(
ϕi

j,k(g)− ϕi
j,k(h)

)∣∣∣2,
where d(h, g) is the riemannian distance between g and h associated to the
bi-invariant metric m. Let us set

ψi
j,l(g) =

di∑
k=1

cil,kϕ
i
j,k(g) .

These functions are eigenfunctions of the Laplace-Beltrami operator associ-
ated to the metric m with eigenvalue νi. We now use the Weyl bounds for
the Laplace-Beltrami eigenfunctions (see e.g. [8]). We have that there exists
a constant C such that for every i, every 1 ≤ j, l ≤ di and every g, h ∈ G,

|ψi
j,l(g)| ≤ C ‖ψi

j,l‖L2(G)(1 + νi)
d−1
2

and
|ψi

j,l(g)− ψi
j,l(h)| ≤ C ‖ψi

j,l‖L2(G)(1 + νi)
d+1
2 d(g, h) .

Then

I(g, h) ≤ C
∑

i : a(1+νi)≤(d(g,h))−1

d−1
i

di∑
j,l=1

C ‖ψi
j,l‖2

L2(G)((1 + νi)d+1d(g, h))2 .
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As in the proof of Lemma 11, we use that t 7−→ tΦα(t) is increasing on
(0,+∞) to obtain that

I(g, h) ≤ C

Φ2
α(d(g, h))

×

∑
i : a(1+νi)≤(d(g,h))−1

d−1
i

di∑
j,l=1

‖ψi
j,l‖2

L2(G)(1 + νi)d−1
(
log(1 + νi)

)α
.

For the second term, using that Φα is non-increasing on (0,+∞), we get

II(g, h) ≤ C

Φ2
α(d(g, h))

×

∑
i : a(1+νi)>(d(g,h))−1

d−1
i

di∑
j,l=1

‖ψi
j,l‖2

L2(G)(1 + νi)d−1(log(1 + νi))α .

Putting the estimates for I and II together, we obtain that

δ2(g, h) ≤ C

Φ2
α(d(g, h))

∑
i≥1

d−1
i

di∑
j,l=1

‖ψi
j,l‖2

L2(G)(1 + νi)d−1(log(1 + νi))α

=
C

Φ2
α(d(g, h))

∑
i≥1

d−1
i

di∑
j,l=1

di∑
k=1

|cil,k|2(1 + νi)d−1(log(1 + νi))α

=
C

Φ2
α(d(g, h))

∑
i≥1

di∑
l,k=1

|cil,k|2(1 + νi)d−1(log(1 + νi))α .

Therefore δ(g, h) ≤ C/Φα(d(g, h)) for some positive constant C. The rest of
the proof of Theorem 8 goes on exactly as in the proof of Theorem 5.
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