@article{SEDP_2007-2008____A6_0, author = {Ignat, Radu}, title = {A survey of some new results in ferromagnetic thin films}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:6}, pages = {1--19}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2007-2008}, mrnumber = {2532942}, language = {en}, url = {http://www.numdam.org/item/SEDP_2007-2008____A6_0/} }
TY - JOUR AU - Ignat, Radu TI - A survey of some new results in ferromagnetic thin films JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:6 PY - 2007-2008 SP - 1 EP - 19 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://www.numdam.org/item/SEDP_2007-2008____A6_0/ LA - en ID - SEDP_2007-2008____A6_0 ER -
%0 Journal Article %A Ignat, Radu %T A survey of some new results in ferromagnetic thin films %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:6 %D 2007-2008 %P 1-19 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://www.numdam.org/item/SEDP_2007-2008____A6_0/ %G en %F SEDP_2007-2008____A6_0
Ignat, Radu. A survey of some new results in ferromagnetic thin films. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2007-2008), Exposé no. 6, 19 p. http://www.numdam.org/item/SEDP_2007-2008____A6_0/
[1] F. Alouges and S. Labbé, z-invariant micromagnetic configurations in cylindrical domains, preprint.
[2] F. Alouges, T. Rivière and S. Serfaty, Néel and cross-tie wall energies for planar micromagnetic configurations, ESAIM Control Optim. Calc. Var. 8 (2002), 31–68. | Numdam | MR | Zbl
[3] L. Ambrosio, C. De Lellis and C. Mantegazza, Line energies for gradient vector fields in the plane, Calc. Var. Partial Differential Equations 9 (1999), 327-355. | MR | Zbl
[4] P. Aviles and Y. Giga, A mathematical problem related to the physical theory of liquid crystal configurations, Proc. Centre Math. Anal. Austral. Nat. Univ. 12 (1987), 1–16. | MR
[5] F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau vortices, Progress in Nonlinear Differential Equations and their Applications, 13. Birkhäuser Boston, Inc., Boston, MA, 1994. | MR | Zbl
[6] R. Dautray and J.-L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques. Vol. 6, Méthodes intégrales et numériques. [Integral and numerical methods], Masson, Paris 1988. | MR | Zbl
[7] A. DeSimone, H. Knüpfer and F. Otto, -d stability of the Néel wall, Calc. Var. Partial Differential Equations 27 (2006), 233-253. | MR
[8] A. Desimone, R. V. Kohn, S. Müller and F. Otto, Magnetic microstructures-a paradigm of multiscale problems, In ICIAM 99 (Edinburgh), pages 175-190. Oxford Univ. Press, Oxford, 2000. | MR | Zbl
[9] A. DeSimone, R. V. Kohn, S. Müller and F. Otto, A compactness result in the gradient theory of phase transitions, Proc. Roy. Soc. Edinburgh 131 (2001), 833-844. | MR | Zbl
[10] A. Desimone, R. V. Kohn, S. Müller and F. Otto, A reduced theory for thin-film micromagnetics, Comm. Pure Appl. Math. 55 (2002), 1408–1460. | MR | Zbl
[11] A. Desimone, R. V. Kohn, S. Müller and F. Otto, Repulsive interaction of Néel walls, and the internal length scale of the cross-tie wall, Multiscale Model. Simul. 1 (2003), 57–104. | MR | Zbl
[12] A. DeSimone, R. V. Kohn, S. Müller and F. Otto, Recent analytical developments in micromagnetics, in: Science of Hysteresis, Elsevier, G. Bertotti and I Magyergyoz, Eds., 2005.
[13] A. DeSimone, R. V. Kohn, S. Müller, F. Otto and R. Schäfer, Two-dimensional modelling of soft ferromagnetic films, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457 (2001), 2983-2991. | MR | Zbl
[14] C.J. García-Cervera, Magnetic domains and magnetic domain walls, Ph.D. thesis, New-York University (1999).
[15] A. Hubert and R. Schäfer, Magnetic domains, Springer, 1998.
[16] R. Ignat, A convergence result for the Néel wall, preprint.
[17] R. Ignat and F. Otto, A compactness result in thin-film micromagnetics and the optimality of the Néel wall, J. Eur. Math. Soc. (JEMS), to appear.
[18] R. Ignat and F. Otto, Compactness of the Landau state in thin-film micromagnetics, in preparation.
[19] R. L. Jerrard, Lower bounds for generalized Ginzburg-Landau functionals, SIAM J. Math. Anal. 30 (1999), 721–746. | MR | Zbl
[20] W. Jin and R. Kohn, Singular perturbation and the energy of folds. J. Nonlinear Sci. 10 (2000), 355–390. | MR | Zbl
[21] F. Lin, Vortex dynamics for the nonlinear wave equation, Comm. Pure Appl. Math. 52 (1999), 737–761. | MR | Zbl
[22] C. Melcher, The logarithmic tail of Néel walls, Arch. Ration. Mech. Anal. 168 (2003), 83–113. | MR
[23] C. Melcher, Logarithmic lower bounds for Néel walls, Calc. Var. Partial Differential Equations 21 (2004), 209–219. | MR | Zbl
[24] F. Pacard and T. Rivière, Linear and nonlinear aspects of vortices, Progress in Nonlinear Differential Equations and their Applications, 39, Birkhäuser Boston Inc., Boston, MA, 2000. | MR | Zbl
[25] R. Riedel and A. Seeger, Micromagnetic treatment of Néel walls, Phys. Stat. Sol. 46, 1971, 377–384.
[26] T. Rivière and S. Serfaty, Limiting domain wall energy for a problem related to micromagnetics, Comm. Pure Appl. Math. 54 (2001), 294–338. | MR | Zbl
[27] T. Rivière and S. Serfaty, Compactness, kinetic formulation, and entropies for a problem related to micromagnetics, Comm. Partial Differential Equations 28 (2003), 249–269. | MR | Zbl
[28] E. Sandier, Lower bounds for the energy of unit vector fields and applications, J. Funct. Anal. 152 (1998), 379–403. | MR | Zbl
[29] H.A.M. van den Berg, Self-consistent domain theory in soft-ferromagnetic media. II, Basic domain structures in thin film objects, J. Appl. Phys. 60 (1986), 1104-1113.