Cet exposé décrit des résultats récents sur le comportement de Lifshitz de la densité d’états de certains modèles aléatoires non monotones. Ici, non monotone signifie que l’opérateur aléatoire n’est pas une fonction monotone des variables aléatoires. L’essentiel des résultats sont obtenus pour des modèles d’Anderson continus ; néanmoins, certains résultats s’appliquent aussi aux modèles de déplacements aléatoires.
In this talk, we describe some recent results on the Lifshitz behavior of the density of states for non monotonous random models. Non monotonous means that the random operator is not a monotonous function of the random variables. The models we consider will mainly be of alloy type but in some cases we also can apply our methods to random displacement models.
@article{SEDP_2007-2008____A14_0, author = {Klopp, Fr\'ed\'eric and Nakamura, Shu}, title = {Lifshitz tails for some non monotonous random models}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:14}, pages = {1--7}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2007-2008}, mrnumber = {2532949}, language = {en}, url = {http://www.numdam.org/item/SEDP_2007-2008____A14_0/} }
TY - JOUR AU - Klopp, Frédéric AU - Nakamura, Shu TI - Lifshitz tails for some non monotonous random models JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:14 PY - 2007-2008 SP - 1 EP - 7 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://www.numdam.org/item/SEDP_2007-2008____A14_0/ LA - en ID - SEDP_2007-2008____A14_0 ER -
%0 Journal Article %A Klopp, Frédéric %A Nakamura, Shu %T Lifshitz tails for some non monotonous random models %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:14 %D 2007-2008 %P 1-7 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://www.numdam.org/item/SEDP_2007-2008____A14_0/ %G en %F SEDP_2007-2008____A14_0
Klopp, Frédéric; Nakamura, Shu. Lifshitz tails for some non monotonous random models. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2007-2008), Exposé no. 14, 7 p. http://www.numdam.org/item/SEDP_2007-2008____A14_0/
[1] J. Baker, M. Loss, and G. Stolz. Minimizing the ground state energy of an electron in a randomly deformed lattice. Preprint arXiv:0707.3988.
[2] J. Baker, M. Loss, and G. Stolz. In progress.
[3] F. Germinet and A. Klein. Bootstrap multiscale analysis and localization in random media. Comm. Math. Phys., 222(2):415–448, 2001. | MR | Zbl
[4] F. Ghribi. Internal Lifshits tails for random magnetic Schrödinger operators. J. Funct. Anal., 248(2):387–427, 2007. | MR | Zbl
[5] P. Hislop and F. Klopp. The integrated density of states for some random operators with nonsign definite potentials. Jour. Func. Anal., 195:12–47, 2002. | MR | Zbl
[6] W. Kirsch. Random Schrödinger operators. In A. Jensen H. Holden, editor, Schrödinger Operators, number 345 in Lecture Notes in Physics, Berlin, 1989. Springer Verlag. Proceedings, Sonderborg, Denmark 1988. | MR | Zbl
[7] W. Kirsch and F. Martinelli. Large deviations and Lifshitz singularities of the integrated density of states of random hamiltonians. Communications in Mathematical Physics, 89:27–40, 1983. | MR | Zbl
[8] W. Kirsch. Random Schrödinger operators and the density of states. In Stochastic aspects of classical and quantum systems (Marseille, 1983), volume 1109 of Lecture Notes in Math., pages 68–102. Springer, Berlin, 1985. | MR | Zbl
[9] W. Kirsch, P. Stollmann, and G. Stolz. Localization for random perturbations of periodic Schrödinger operators. Random Oper. Stochastic Equations, 6(3):241–268, 1998. | MR | Zbl
[10] F. Klopp. Localization for some continuous random Schrödinger operators. Communications in Mathematical Physics, 167:553–570, 1995. | MR | Zbl
[11] F. Klopp. Internal Lifshits tails for random perturbations of periodic Schrödinger operators. Duke Math. J., 98(2):335–396, 1999. | MR | Zbl
[12] F. Klopp and S. Nakamura. The band edge behaviour of the integrated density of states for general Bernoulli random models. In progess.
[13] F. Klopp and S. Nakamura. Spectral extrema and lifshitz tails for non monotonous alloy type models. Preprint.
[14] H. Najar. The spectrum minimum for random Schrödinger operators with indefinite sign potentials. J. Math. Phys., 47(1):013515, 13, 2006. | MR | Zbl
[15] L. Pastur and A. Figotin. Spectra of random and almost-periodic operators, volume 297 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1992. | MR | Zbl
[16] P. Stollmann. Caught by disorder, volume 20 of Progress in Mathematical Physics. Birkhäuser Boston Inc., Boston, MA, 2001. Bound states in random media. | MR | Zbl
[17] I. Veselić. Integrated density of states and Wegner estimates for random Schrödinger operators. In Spectral theory of Schrödinger operators, volume 340 of Contemp. Math., pages 97–183. Amer. Math. Soc., Providence, RI, 2004. | MR