On the collision of two solitons for the generalized KdV equation in the nonintegrable case
Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2007-2008), Exposé no. 12, 10 p.
Martel, Yvan 1 ; Merle, Frank 2

1 Université de Versailles Saint-Quentin-en-Yvelines, Mathématiques, 45, av. des Etats-Unis, 78035 Versailles cedex, France
2 Université de Cergy-Pontoise, IHES and CNRS, Mathématiques, 2, av. Adolphe Chauvin, 95302 Cergy-Pontoise cedex, France
@article{SEDP_2007-2008____A12_0,
     author = {Martel, Yvan and Merle, Frank},
     title = {On the collision of two solitons for the generalized {KdV} equation in the nonintegrable case},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"},
     note = {talk:12},
     pages = {1--10},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2007-2008},
     mrnumber = {2532947},
     language = {en},
     url = {http://www.numdam.org/item/SEDP_2007-2008____A12_0/}
}
TY  - JOUR
AU  - Martel, Yvan
AU  - Merle, Frank
TI  - On the collision of two solitons for the generalized KdV equation in the nonintegrable case
JO  - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
N1  - talk:12
PY  - 2007-2008
SP  - 1
EP  - 10
PB  - Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://www.numdam.org/item/SEDP_2007-2008____A12_0/
LA  - en
ID  - SEDP_2007-2008____A12_0
ER  - 
%0 Journal Article
%A Martel, Yvan
%A Merle, Frank
%T On the collision of two solitons for the generalized KdV equation in the nonintegrable case
%J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
%Z talk:12
%D 2007-2008
%P 1-10
%I Centre de mathématiques Laurent Schwartz, École polytechnique
%U http://www.numdam.org/item/SEDP_2007-2008____A12_0/
%G en
%F SEDP_2007-2008____A12_0
Martel, Yvan; Merle, Frank. On the collision of two solitons for the generalized KdV equation in the nonintegrable case. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2007-2008), Exposé no. 12, 10 p. http://www.numdam.org/item/SEDP_2007-2008____A12_0/

[1] H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal. 82, (1983) 313–345. | MR | Zbl

[2] J.L. Bona, W.G. Pritchard and L.R. Scott, Solitary-wave interaction, Phys. Fluids 23, 438, (1980). | Zbl

[3] W. Craig, P. Guyenne, J. Hammack, D. Henderson and C. Sulem, Solitary water wave interactions. Phys. Fluids 18, (2006), 057106. | MR

[4] J. C. Eilbeck and G. R.  McGuire, Numerical study of the regularized long-wave equation. II. Interaction of solitary waves, J. Computational Phys. 23 (1977), 63–73. | MR | Zbl

[5] E. Fermi, J. Pasta and S. Ulam, Studies of nonlinear problems, I, Los Alamos Report LA1940 (1955); reproduced in Nonlinear Wave Motion, A.C. Newell, ed., American Mathematical Society, Providence, R. I., 1974, pp. 143–156. | MR | Zbl

[6] R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett., 27 (1971), 1192–1194.

[7] H. Kalisch and J.L. Bona, Models for internal waves in deep water, Discrete and Continuous Dynamical Systems, 6 (2000), 1–20. | MR | Zbl

[8] P. D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21, (1968) 467–490. | MR | Zbl

[9] Y. Martel, Asymptotic N–soliton–like solutions of the subcritical and critical generalized Korteweg–de Vries equations, Amer. J. Math. 127 (2005), 1103–1140. | MR | Zbl

[10] Y. Martel, Linear problems related to asymptotic stability of solitons of the generalized KdV equations, SIAM J. Math. Anal. 38 (2006), 759–781. | MR | Zbl

[11] Y. Martel and F. Merle, Asymptotic stability of solitons for subcritical generalized KdV equations, Arch. Ration. Mech. Anal. 157 (2001) 219–254. | MR | Zbl

[12] Y. Martel and F. Merle, Asymptotic stability of solitons of the subcritical gKdV equations revisited. Nonlinearity 18 (2005), no. 1, 55–80. | MR | Zbl

[13] Y. Martel and F. Merle, Asymptotic stability of solitons of the gKdV equations with general nonlinearity. To appear in Math. Annalen. arXiv:0706.1174v2 | MR

[14] Y. Martel and F. Merle, Refined asymptotics around solitons for gKdV equations. To appear in Discrete and Continuous Dynamical Systems. Series A. arXiv:0706.1178v2 | MR

[15] Y. Martel and F. Merle, Description of two soliton collision for the quartic gKdV equations. arXiv:0709.2672v1 | MR

[16] Y. Martel and F. Merle, Stability of two soliton collision for nonintegrable gKdV equations. arXiv:0709.2677v1

[17] Y. Martel, F. Merle and Tai-Peng Tsai, Stability and asymptotic stability in the energy space of the sum of N solitons for the subcritical gKdV equations, Commun. Math. Phys. 231, (2002) 347–373. | MR | Zbl

[18] Y. Martel, F. Merle and T. Mizumachi, preprint. | MR

[19] R.M. Miura, The Korteweg–de Vries equation: a survey of results, SIAM Review 18, (1976) 412–459. | MR | Zbl

[20] L.Y. Shih, Soliton–like interaction governed by the generalized Korteweg-de Vries equation, Wave motion 2 (1980), 197–206. | MR | Zbl

[21] T. Tao, Scattering for the quartic generalised Korteweg-de Vries equation, J. Diff. Eq. 232 (2007), 623–651. | MR

[22] T. Tao, Why solitons are stable ? arXiv:0802.2408v2

[23] M.I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math. 39, (1986) 51–68. | MR | Zbl

[24] N.J. Zabusky and M.D. Kruskal, Interaction of “solitons” in a collisionless plasma and recurrence of initial states, Phys. Rev. Lett. 15 (1965), 240–243.