@article{SEDP_2007-2008____A12_0, author = {Martel, Yvan and Merle, Frank}, title = {On the collision of two solitons for the generalized {KdV} equation in the nonintegrable case}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:12}, pages = {1--10}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2007-2008}, mrnumber = {2532947}, language = {en}, url = {http://www.numdam.org/item/SEDP_2007-2008____A12_0/} }
TY - JOUR AU - Martel, Yvan AU - Merle, Frank TI - On the collision of two solitons for the generalized KdV equation in the nonintegrable case JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:12 PY - 2007-2008 SP - 1 EP - 10 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://www.numdam.org/item/SEDP_2007-2008____A12_0/ LA - en ID - SEDP_2007-2008____A12_0 ER -
%0 Journal Article %A Martel, Yvan %A Merle, Frank %T On the collision of two solitons for the generalized KdV equation in the nonintegrable case %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:12 %D 2007-2008 %P 1-10 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://www.numdam.org/item/SEDP_2007-2008____A12_0/ %G en %F SEDP_2007-2008____A12_0
Martel, Yvan; Merle, Frank. On the collision of two solitons for the generalized KdV equation in the nonintegrable case. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2007-2008), Exposé no. 12, 10 p. http://www.numdam.org/item/SEDP_2007-2008____A12_0/
[1] H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal. 82, (1983) 313–345. | MR | Zbl
[2] J.L. Bona, W.G. Pritchard and L.R. Scott, Solitary-wave interaction, Phys. Fluids 23, 438, (1980). | Zbl
[3] W. Craig, P. Guyenne, J. Hammack, D. Henderson and C. Sulem, Solitary water wave interactions. Phys. Fluids 18, (2006), 057106. | MR
[4] J. C. Eilbeck and G. R. McGuire, Numerical study of the regularized long-wave equation. II. Interaction of solitary waves, J. Computational Phys. 23 (1977), 63–73. | MR | Zbl
[5] E. Fermi, J. Pasta and S. Ulam, Studies of nonlinear problems, I, Los Alamos Report LA1940 (1955); reproduced in Nonlinear Wave Motion, A.C. Newell, ed., American Mathematical Society, Providence, R. I., 1974, pp. 143–156. | MR | Zbl
[6] R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett., 27 (1971), 1192–1194.
[7] H. Kalisch and J.L. Bona, Models for internal waves in deep water, Discrete and Continuous Dynamical Systems, 6 (2000), 1–20. | MR | Zbl
[8] P. D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21, (1968) 467–490. | MR | Zbl
[9] Y. Martel, Asymptotic –soliton–like solutions of the subcritical and critical generalized Korteweg–de Vries equations, Amer. J. Math. 127 (2005), 1103–1140. | MR | Zbl
[10] Y. Martel, Linear problems related to asymptotic stability of solitons of the generalized KdV equations, SIAM J. Math. Anal. 38 (2006), 759–781. | MR | Zbl
[11] Y. Martel and F. Merle, Asymptotic stability of solitons for subcritical generalized KdV equations, Arch. Ration. Mech. Anal. 157 (2001) 219–254. | MR | Zbl
[12] Y. Martel and F. Merle, Asymptotic stability of solitons of the subcritical gKdV equations revisited. Nonlinearity 18 (2005), no. 1, 55–80. | MR | Zbl
[13] Y. Martel and F. Merle, Asymptotic stability of solitons of the gKdV equations with general nonlinearity. To appear in Math. Annalen. arXiv:0706.1174v2 | MR
[14] Y. Martel and F. Merle, Refined asymptotics around solitons for gKdV equations. To appear in Discrete and Continuous Dynamical Systems. Series A. arXiv:0706.1178v2 | MR
[15] Y. Martel and F. Merle, Description of two soliton collision for the quartic gKdV equations. arXiv:0709.2672v1 | MR
[16] Y. Martel and F. Merle, Stability of two soliton collision for nonintegrable gKdV equations. arXiv:0709.2677v1
[17] Y. Martel, F. Merle and Tai-Peng Tsai, Stability and asymptotic stability in the energy space of the sum of solitons for the subcritical gKdV equations, Commun. Math. Phys. 231, (2002) 347–373. | MR | Zbl
[18] Y. Martel, F. Merle and T. Mizumachi, preprint. | MR
[19] R.M. Miura, The Korteweg–de Vries equation: a survey of results, SIAM Review 18, (1976) 412–459. | MR | Zbl
[20] L.Y. Shih, Soliton–like interaction governed by the generalized Korteweg-de Vries equation, Wave motion 2 (1980), 197–206. | MR | Zbl
[21] T. Tao, Scattering for the quartic generalised Korteweg-de Vries equation, J. Diff. Eq. 232 (2007), 623–651. | MR
[22] T. Tao, Why solitons are stable ? arXiv:0802.2408v2
[23] M.I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math. 39, (1986) 51–68. | MR | Zbl
[24] N.J. Zabusky and M.D. Kruskal, Interaction of “solitons” in a collisionless plasma and recurrence of initial states, Phys. Rev. Lett. 15 (1965), 240–243.