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ENTROPY AND LOCALIZATION OF EIGENFUNCTIONS

NALINI ANANTHARAMAN

1. Motivations

The theory of quantum chaos tries to understand how the chaotic behaviour of a classical
Hamiltonian system is reflected in its quantum counterpart. For instance, let M be a
compact Riemannian C∞ manifold, with negative sectional curvatures. The geodesic flow
has the Anosov property, which is considered as the ideal chaotic behaviour in the theory
of dynamical systems. The corresponding quantum dynamics is the unitary flow generated
by the Laplace-Beltrami operator on L2(M). One expects that the chaotic properties
of the geodesic flow influence the spectral theory of the Laplacian, for large eigenvalues.
The Random Matrix conjecture [5] asserts that the large eigenvalues should, after proper
renormalization, statistically resemble those of a large random matrix, at least for a generic
Anosov metric. The Quantum Unique Ergodicity conjecture [21] (see also [4, 24]) deals with
the corresponding eigenfunctions ψ: it claims that the probability density |ψ(x)|2dx should
approach (in a weak sense) the Riemannian volume, when the eigenvalue tends to infinity.
In fact a stronger property should hold for the Wigner transform Wψ, a distribution on
the cotangent bundle T ∗M which describes the distribution of the wave function ψ on the
classical phase space T ∗M (position and momentum).

To describe the problem in a more precise way, we will adopt a semiclassical point of
view, that is, consider the eigenstates of eigenvalue unity of the semiclassical Laplacian
−~

24, in the semiclassical limit ~ → 0. We denote by (ψk)k∈N an orthonormal basis
of L2(M) made of eigenfunctions of the Laplacian, and by (− 1

~2
k

)k∈N the corresponding

eigenvalues:

(1.1) −~
2
k4ψk = ψk, with ~k+1 ≤ ~k .

We are interested in the high-energy eigenfunctions of −4, in other words the semiclassical
limit ~k → 0.

The Wigner distribution associated to an eigenfunction ψk is defined by

Wk(a) = 〈Op~k
(a)ψk, ψk〉L2(M), a ∈ C∞

c (T ∗M) .

Here Op
~k

is a quantization procedure, set at the scale ~k, which associates a bounded
operator on L2(M) to any smooth phase space function a with nice behaviour at infinity.
See for instance [10] or [11] for various definitions of Op on R

d. On a manifold, we just use
local coordinates to define Op in a finite system of charts, then glue the objects defined
locally thanks to a smooth partition of unity. If a is a function on the manifold M ,
Op~(a) is the multiplication by a, and thus we have Wk(a) =

∫

M
a(x)|ψk(x)|

2dx: the
distribution Wk is a microlocal lift of the probability measure |ψk(x)|2dx into a phase space
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distribution. Although the definition of Wk depends on a certain number of choices, like
the choice of local coordinates, or of the quantization procedure (Weyl, anti-Wick, “right”
or “left” quantization...), its asymptotic behaviour when ~k −→ 0 does not. Accordingly,
we call semiclassical measures the limit points of the sequence (Wk)k∈N, in the distribution
topology.

In the semiclassical limit ~ −→ 0, “quantum mechanics converges to classical mechanics”.
We will denote |·|x the norm on T ∗

xM given by the metric. The geodesic flow (gt)t∈R is the

Hamiltonian flow on T ∗M generated by the Hamiltonian H(x, ξ) = |ξ|2x
2
. The corresponding

quantum operator is −~24
2

, which generates the unitary flow (U t
~
) = (exp(it~4

2
)) acting on

L2(M). The convergence of (U t
~
) to (gt) when ~ −→ 0 is expressed in the Egorov Theorem :

Theorem 1.1. Let a ∈ C∞
c (T ∗M). Then, for any given t in R,

(1.2) ‖U−t
~

Op
~
(a)U t

~
− Op

~
(a ◦ gt)‖L2(M) = O(~).

The remainder term depends on t, and this is a notorious source of problems when one
wants to use semiclassical methods to study the large time behaviour of (U t

~
).

Using (1.2) and other standard semiclassical arguments, one shows the following :

Proposition 1.2. Any semiclassical measure is a probability measure carried on the energy
layer E = H−1(1

2
) (which coincides with the unit cotangent bundle E = S∗M). This measure

is invariant under the geodesic flow.

If the geodesic flow has the Anosov property — for instance if M has negative sectional
curvature — then there exist many invariant probability measures on E , in addition to the
Liouville measure. The geodesic flow has countably many periodic orbits, each of them
carrying an invariant probability measure. There are still many others, like the equilibrium
states obtained by variational principles [14].

For manifolds with an ergodic geodesic flow (with respect to the Liouville measure), it
has been known for some time that almost all eigenfunctions become uniformly distributed
over E , in the semiclassical limit. This property is dubbed as Quantum Ergodicity :

Theorem 1.3. [22, 26, 8] Let M be a compact Riemannian manifold, assume that the
action of the geodesic flow on E = S∗M is ergodic with respect to the Liouville measure.
Let (ψk)k∈N be an orthonormal basis of L2(M) consisting of eigenfunctions of the Laplacian
(1.1), and let (Wk) be the associated Wigner distributions on T ∗M .

Then, there exists a subset S ⊂ N of density 1, such that

Wk −→
k−→∞,k∈S

Liouville.

The question of knowing, in particular cases, if there can exist “exceptional” subsequences
with a different behaviour is widely open. On a negatively curved manifold, the geodesic
flow satisfies the ergodicity assumption, and in fact much stronger properties : mixing,
K–property,... In this case, the Quantum Unique Ergodicity conjecture [21] expresses
the belief that there exists a unique semiclassical measure, namely the Liouville measure
on E : Wk −→

k−→∞
Liouville. In other words, in the semiclassical régime all eigenfunctions

should become uniformly distributed over E .
IV–2



So far the most precise results on this question were obtained for manifolds M with
constant negative curvature and arithmetic properties: see Rudnick–Sarnak [21], Wolpert
[25]. In that very particular situation, there exists a countable commutative family of
self–adjoint operators commuting with the Laplacian : the Hecke operators. One may
thus decide to restrict the attention to common bases of eigenfunctions, often called “arith-
metic” eigenstates, or Hecke eigenstates. A few years ago, Lindenstrauss [19] proved that
the arithmetic eigenstates become asymptotically equidistributed (Arithmetic Quantum
Unique Ergodicity). If there is some degeneracy in the spectrum of the Laplacian, note
that it could be possible that the Quantum Unique Ergodicity conjectured by Rudnick
and Sarnak holds for one orthonormal basis but not for another. In the arithmetic case, it
is believed that the spectrum of the Laplacian has bounded multiplicity, in which case it
would be a harmless assumption to consider only Hecke eigenstates.

Nevertheless, one may be less optimistic about the general conjecture. Faure–Nonnenmacher–
De Bièvre exhibited in [12] a simple example of a symplectic Anosov dynamical system,

namely the action of the linear hyperbolic automorphism

(

2 1
1 1

)

on the 2-torus, the

Weyl–quantization of which does not satisfy the Quantum Unique Ergodicity conjecture.
In this model, it is known [17] that there is one orthonormal family of eigenfunctions sat-
isfying Quantum Unique Ergodicity, but, due to high degeneracies in the spectrum, one
can also construct eigenfunctions with a different behaviour. Precisely, they construct a
family of eigenstates for which the semiclassical measure consists in two ergodic compo-
nents: half of it is the Liouville measure, while the other half is a Dirac peak on a single
unstable periodic orbit. It was also shown that this half-localization on a periodic orbit
is maximal for this model [13] : a semiclassical measure cannot have more than half the
mass carried by a finite union of closed orbits. Another type of semiclassical measure was
recently obtained by Kelmer for a quantized automorphism on a higher-dimensional torus
[15]: it consists in the Lebesgue measure on some invariant co-isotropic subspace of the
torus. For these torus automorphisms, the existence of exceptional eigenstates is due to
some nongeneric algebraic properties of the classical and quantized systems.

2. Main result.

We wish to study certain aspects of the problem by considering the Kolmogorov–Sinai
entropy of semiclassical measures. We work on a compact manifold M of arbitrary dimen-
sion, and only assume that the geodesic flow has the Anosov property. In fact, our method
is very general, and can without doubt be adapted to more general Anosov Hamiltonian
systems.

The Kolmogorov–Sinai entropy, also called metric entropy, of a (gt)-invariant probability
measure µ is a nonnegative number hKS(µ) that describes, in some sense, the complexity
of a µ-typical orbit of the flow. The precise definition will be given later, but for the
moment let us just give a few facts. A measure carried on a closed geodesic has zero
entropy. In constant curvature, the entropy is known to be maximal for the Liouville
measure. More generally, an upper bound on the entropy is given by the Ruelle inequality:
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since the geodesic flow has the Anosov property, the energy layer E is foliated into unstable
manifolds of the flow, and for any invariant probability measure µ one has

(2.1) hKS(µ) ≤

∣

∣

∣

∣

∫

E

log Ju(ρ)dµ(ρ)

∣

∣

∣

∣

.

In this inequality, Ju(ρ) is the unstable Jacobian of the flow at the point ρ ∈ E , defined
as the Jacobian of the map g−1 restricted to the unstable manifold at the point g1ρ (the
average of log Ju over any invariant measure is negative). If M has dimension d and has
constant sectional curvature −1, this inequality just reads hKS(µ) ≤ d − 1. The equality
holds in (2.1) if and only if µ is the Liouville measure on E [18].

Let µ be a (gt)–invariant probability measure on E . The Birkhoff ergodic theorem says
that, for µ–almost every ρ ∈ E , the weak limit

µρ = lim
|t|−→∞

1

t

∫ t

0

δgsρds

exists, and is an ergodic probability measure. We can then write

µ =

∫

E

µρdµ(ρ),

which is called the ergodic decomposition of µ. Note that the ergodic probability measures
are the extremal points of the compact convex set of (gt)–invariant probability measures.

To understand the connection of our results with the previous discussion, it is impor-
tant to know that the entropy if an affine functional on the convex set of (gt)–invariant
probability measures. In fact, we have

hKS(µ) =

∫

E

hKS(µ
ρ)dµ(ρ).

Introduce the positive real number

Λ = − sup
µ

∫

log Ju(ρ)dµ(ρ) = inf
γ

d−1
∑

i=1

λ+
i (γ).

The first sup runs over the set of (gt)–invariant probability measures µ on E . The second inf
runs over the set of closed geodesics, and the λ+

i denote the positive Lyapunov exponents,
which are, for a closed orbit, the logarithms of the eigenvalues of the Poincaré map. The
identity between these two expressions of Λ comes from

— the density of invariant measures carried by closed orbits, in the set of invariant
probability measures;

— the simple remark that, on a closed orbit, integrating − log Ju is the same as evaluating
∑

λ+
i .

For instance, for a d-dimensional manifold of constant sectional curvature −1, we find
Λ = d− 1.

In the whole article, we consider a certain subsequence of eigenstates (ψkj
)j∈N of the

Laplacian, such that the corresponding sequence of Wigner functions (Wkj
) converges to

a certain semiclassical measure µ (see the discussion preceding Proposition 1.2). The
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subsequence (ψkj
) will simply be denoted by (ψ~)~→0, using the slightly abusive notation

ψ~ = ψ~kj
for the eigenstate ψkj

. Each state ψ~ satisfies

(2.2) (−~
2 4−1)ψ~ = 0 .

Theorem 2.1. [1]We find a number κ > 0, and two continuous decreasing functions
τ : [0, 1] −→ [0, 1], ϑ : (0, 1] −→ R+ with τ(0) = 1, ϑ(0) = +∞, such that:
If µ is a semi-classical invariant measure, and

µ =

∫

S1M

µρdµ(ρ)

is its decomposition in ergodic components, then, for all δ > 0,

µ

(

{ρ, hKS(µ
ρ) ≥

Λ

2
(1 − δ)}

)

≥

(

κ

ϑ(δ)

)2

(1 − τ(δ)).

Corollary 1. This implies that hKS(µ) > 0, and gives a lower bound for the topological
entropy of the support, htop(supp µ) ≥ Λ

2
.

In the case of constant sectional curvature −1, this last statement can be rephrased in
terms of the Hausdorff dimension : dim(supp µ) ≥ d.

Theorem 2.1 is compatible with the kind of counter–examples found by Faure–Nonnenmacher–
De Bièvre [12]. It allows certain ergodic components of µ to be carried by closed geodesics,
but says there also have to be components of positive entropy. This stands in contrast with
the much stronger result obtained in the arithmetic case by Bourgain and Lindenstrauss :

Theorem 2.2. [6] Let M be a congruence arithmetic surface, and (ψj) an orthonormal
basis of eigenfunctions for the laplacian and the Hecke operators.

Let µ be a corresponding semiclassical measure, with ergodic decomposition µ =
∫

S∗X
µρdµ(ρ),

then for almost all ergodic components we have hKS(µ
ρ) ≥ 1

9
.

What we prove in [1] is in fact a more general result about quasi-modes of order
~| log ~|−1:

Theorem 2.3. [1]We find a number κ > 0, and two continuous decreasing functions
τ : [0, 1] −→ [0, 1], ϑ : (0, 1] −→ R+ with τ(0) = 1, ϑ(0) = +∞, such that:
If (ψ~) is a sequence of normalized L2 functions with

‖(−~
2 4−1)ψ~‖L2(M) ≤ c~| log ~|−1,

then for any semi-classical invariant measure µ associated to (ψ~), for any δ > 0,

µ

(

{ρ, hKS(µ
ρ) ≥

Λ

2
(1 − δ)}

)

≥ (1 − τ(δ))

(

κ

ϑ(δ)
− cϑ(δ)

)2

+

− cκ.

If c is small enough, this implies that µ has positive entropy.

If c is too large, it is rather easy to construct quasimodes of order c~| log ~|−1 whose
semiclassical measures are carried on a closed geodesic.
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In the theorem, all quantities κ, τ , ϑ can, in principle, be expressed explicitly in terms of
certain dynamical quantities (Lyapunov exponents,...), but not in a satisfactory way. This
is why the following theorem, proved in [3], is in many respects more pleasant.

Theorem 2.4. [3] Let µ be a semiclassical measure associated to the eigenfunctions of the
Laplacian on M . Then its metric entropy satisfies

(2.3) hKS(µ) ≥
3

2

∣

∣

∣

∣

∫

E

log Ju(ρ)dµ(ρ)

∣

∣

∣

∣

− (d− 1)λmax ,

where d = dimM and λmax = limt→±∞
1
t
log supρ∈E |dg

t
ρ| is the maximal expansion rate of

the geodesic flow on E .
In particular, if M has constant sectional curvature −1, this means that

(2.4) hKS(µ) ≥
d− 1

2
.

The bound (2.4) in the above theorem is much sharper than Theorem 2.1 in the case of
constant curvature. On the other hand, if the curvature varies a lot (still being negative
everywhere), the right hand side of (2.3) may actually be negative, in which case the above
bound is trivial. We believe this to be but a technical shortcoming of our method, and
would actually expect the following bound to hold:

(2.5) hKS(µ) ≥
1

2

∣

∣

∣

∣

∫

E

log Ju(ρ)dµ(ρ)

∣

∣

∣

∣

.

Quantum Unique Ergodicity would mean that hKS(µ) =
∣

∣

∫

E
log Ju(ρ) dµ(ρ)

∣

∣ [18]. We
believe however that (2.5) is the optimal result that can be obtained without using more
precise information, like for instance upper bounds on the multiplicities of eigenvalues.
Indeed, in the above mentioned examples of Anosov systems where the Quantum Unique
Ergodicity conjecture is wrong, the bound (2.5) is actually sharp [12, 15, 2]. In those exam-
ples, the spectrum has very high degeneracies, which allows for much freedom to select the
eigenstates, and could be responsible for the failure of Quantum Unique Ergodicity. Such
high degeneracies are not expected to happen in the case of the Laplacian on a negatively
curved manifold. For the moment, however, there is no clear understanding of the precise
relation between spectral degeneracies and failure of Quantum Unique Ergodicity.

3. Outline of the proof

3.1. Definition of entropy, and main idea of the proof. Let µ be a probability
measure on E . Let (P1, . . . , PK) be a finite measurable partition of the unit tangent bundle :
E = P1 t ... t PK . The entropy of µ with respect to the partition P is

hP (µ) = −
K

∑

k=1

µ(Pk) logµ(Pk).
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Assume now that µ is (gt)–invariant. For any integer n, denote P ∨n the partition formed
of the sets Pα0 ∩ g

−1Pα1 ... ∩ g
−nPαn

. Denote

hn(µ, P ) = hP∨n(µ) = −
∑

(αj)∈{1,...,K}{0,...,n}

µ(Pα0∩g
−1Pα1 ...∩g

−nPαn
) logµ(Pα0∩g

−1Pα1 ...∩g
−nPαn

).

If µ is (gt)–invariant, it follows from the convexity of the logarithm that

(3.1) hn+m(µ, P ) ≤ hn(µ, P ) + hm−1(µ, P ),

in other words the sequence (hn+1(µ, P ))n∈N is subadditive. The entropy of µ with respect
to the action of geodesic flow and to the partition P is defined by

(3.2) hKS(µ, P ) = lim
n−→+∞

−
1

n
hn(µ, P ) = inf

n∈N

−
1

n
hn(µ, P ).

Note that µ(Pα0 ∩ g−1Pα1 ... ∩ g−nPαn
) measures the µ–probability to visit successively

Pα0 , Pα1 ,..., Pαn
at times 1, 2,..., n of the geodesic flow. The entropy tries to measure

the exponential decay of these probabilities when n gets large : it is easy to see that
hKS(µ, P ) ≥ β if there exists C such that µ(Pα0 ∩ g

−1Pα1 ... ∩ g
−nPαn

) ≤ Ce−βn, for all n
and all α0, . . . , αn.

The entropy of µ with respect to the action of the geodesic flow is defined as

hKS(µ) = sup
P
hKS(µ, P ),

the supremum running over all finite measurable partitions P . For Anosov systems, this
supremum is reached for a well-chosen partition P : in fact, as soon as the diameter of
the Pis is small enough. Besides, we may restrict our attention to partitions P which are
actually partitions of the manifold M (lifted to E). This will simplify certain aspects of
the analysis.

The existence of the limit in (3.2), and the fact that it coincides with the inf follow from
a standard subadditivity argument. It has a crucial consequence : if (µk) is a sequence of
(gt)–invariant probability measures converging weakly to µ, then

hKS(µ, P ) ≥ lim sup
k

hKS(µk, P )

(provided µ does not charge the boundary of P , which is a harmless assumption on P once
µ is fixed). In particular : if (µk) converges weakly to µ, and if we have an estimate

µk(Pα0 ∩ g
−1Pα1 ... ∩ g

−nPαn
) ≤ Cke

−βn

where Ck may depend on k, but not β, we have hKS(µk) ≥ β for all k, and this estimate
goes to the limit to yield hKS(µ) ≥ β.

Since our semiclassical measure µ is defined as a limit of Wigner measures Wk, a naive
idea would be to estimate from below the entropy of Wk and then pass to the limit. This
idea cannot work so easily, since the Wk are not (gt)–invariant probability measures. They
are not positive measures, and they are not (gt)–invariant. One can adjust the definition of
Op to have one of these properties, but never both. However, we proved in [1] the following
estimate :
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Theorem 3.1. (The main estimate, [1]) For every K > 0, there exists ~K > 0 such that,
uniformly for all ~ < ~K, for all n ≤ K| log ~|, for all α0, ..., αn,

∣

∣

∣
〈1lsmPαn

(n)1lsmPαn−1
(n− 1)...1lsmPα0

ψ~, ψ~〉
∣

∣

∣
≤ (2π~)−d/2e−

Λ
2
n(1 + O(diam(P )))n.

In the theorem,
— 1lPα

is the characteristic function of Pα (recall that we restricted our attention to
partitions of M); 1lsmα means that we smooth this function by convolution to get a C∞–
function of M , keeping the property

∑

α 1lsm2
Pα

≡ 1.
— we see 1lsmα as a multiplication operator on L2(M), and denote 1lsmα (t) its evolution

under the Schrödinger flow. That is, 1lsmα (t) = exp(−it~4
2
)1lsmα exp(it~4

2
).

— diam(P ) denotes an upper bound on the diameter of the Pk, it can be made arbitrarily
small.

The estimate holds for any family of wave functions (ψ~) which are ~–microlocalized
near the energy layer E , and, in particular, for the solutions of (−~

2 4−1)ψ~ = 0. It is
actually a result about the kernel of the operator 1lsmαn

(n)1lsmαn−1
(n− 1)...1lsmα0

, and not about
eigenfunctions. Theorem 3.1 is proved by writing

1lsmαn
(n)1lsmαn−1

(n−1)...1lsmα0
= exp

(

−in~
4

2

)

1lsmαn
exp

(

i~
4

2

)

1lsmαn−1
exp

(

i~
4

2

)

. . . exp

(

i~
4

2

)

1lsmα0
,

by writing the asymptotic expansion of the kernel of exp(i~4
2
)1lsmαk

, when ~ −→ 0, as a
Fourier integral operator, and by iterating a large number of times this family of Fourier
integral operators. For these kinds of techniques, 1lsmαk

needs to be a smooth function, which
is why we had to apply a convolution to 1lαk

.
In quantum mechanics, the quantity 〈1lsmPαn

(n)1lsmPαn−1
(n−1)...1lsmα0

ψ~, ψ~〉 is the probability

amplitude, in the state ψ~, to visit successively Pα0 , Pα1 ,..., Pαn
at times 1, 2,..., n of the

Schrödinger flow. Theorem 3.1 says that this probability decays exponentially fast1 with
rate Λ

2
with n, with a leading prefactor (2π~)−d/2 that explodes polynomially in ~

−1.
We would like to deduce from Theorem 3.1 that the entropy of the state ψ~ is larger

than Λ
2

for any ~, before passing to the limit ~ −→ 0, to conclude that hKS(µ) ≥ Λ
2

for any
semiclassical measure µ.

The difficulty is that the probability amplitude 〈1lsmαn
(n)1lsmαn−1

(n − 1)...1lsmα0
ψ~, ψ~〉 is a

complex number. We are in the situation of a family of non–commutative dynamical
systems converging to a classical dynamical system when ~ −→ 0. We have to find a
convenient notion of “entropy” for the state ψ~ under the action of the Schrödinger flow.
Unfortunately, there seems to be no adequate notion of non–commutative entropy that
would converge to the usual Kolmogorov–Sinai entropy when ~ −→ 0 (for instance, the
non–commutative entropy of [9] vanishes as soon as the quantum evolution is unitary with
discrete spectrum, which is the case for the Schrödinger flow).

1Strictly speaking, the result does not hold for all n, but only for n of order K| log ~|, with K arbitrarily
large. This is enough for our purposes. Note that, because of the prefactor (2π~)−d/2, the estimate is only
non trivial when n is a large multiple of | log ~|.
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This difficulty explains the complicated formulation of Theorems 2.1, 2.3. We will de-
scribe the proof of Theorem 2.4, which was made much easier by the use of the entropic
uncertainty principle.

3.2. Weighted entropic uncertainty principle. Our main tool is an adaptation of the
entropic uncertainty principle first introduced in [16, 20]. This principle states that if a
unitary matrix has “small” entries, then any of its eigenvectors must have a “large” Shannon
entropy.

Let (H, 〈., .〉) be a complex Hilbert space, and denote ‖ψ‖ =
√

〈ψ, ψ〉 the associated
norm. Let (πk)

N
k=1 be an quantum partition of unity, that is, a family of operators on H

such that

(3.3)

N
∑

k=1

πkπ
∗
k = Id.

In other words, for all ψ ∈ H we have

‖ψ‖2 =
N

∑

k=1

‖ψk‖
2

if we denote ψk = π∗
kψ. If ‖ψ‖ = 1, we define the entropy of ψ with respect to the partition

π as

hπ(ψ) = −
N

∑

k=1

‖ψk‖
2 log‖ψk‖

2.

We extend this definition by introducing the notion of pressure, associated to a family
(αk)k=1,...,N of positive real numbers: it is defined by

pπ,α(ψ) = −
N

∑

k=1

‖ψk‖
2 log‖ψk‖

2 −
N

∑

k=1

‖ψk‖
2 logα2

k.

In Theorem 3.2, we have two families of weights (αk)k=1,...,N , (βj)j=1,...,N , and consider the
corresponding pressures pπ,α(ψ), pπ,β(ψ). Besides the appearance of the weights α, β, we
bring another modification to the statement in [20] by introducing an auxiliary operator
O — for purely technical reasons.

Theorem 3.2. Let O be a bounded operator on H. Let U be an isometry on H.

Define c
(α,β)
O (U)

def
= supj,k αkβj‖π

∗
j U πkO‖L(H).

Then, for any ε ≥ 0, for any normalized ψ ∈ H satisfying

∀k = 1, . . . ,N , ‖(Id−O)π∗
kψ‖ ≤ ε ,

the pressures pπ,β
(

Uψ
)

, pπ,α
(

ψ
)

satisfy

pπ,β
(

Uψ
)

+ pπ,α
(

ψ
)

≥ −2 log
(

c
(α,β)
O (U) + N AB ε

)

where A = maxαk, B = max βj.
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Example 1. The original result of [20] corresponds to the case O = Id, ε = 0, αk = βj = 1,
and the operators πk are orthogonal projectors on an orthonormal basis (ek)k∈N of H (take
N = ∞ if H is infinite dimensional). In this case, the theorem says that

hπ(Uψ) + hπ(ψ) ≥ −2 log c(U)

where c(U) = supj,k |〈ek,Uej〉| is the supremum of all matrix elements of U in the or-
thonormal basis associated to π. As a special case, we get hπ(ψ) ≥ − log c(U) if ψ is an
eigenfunction of U .

3.3. Applying the entropic uncertainty principle to the Laplacian eigenstates.

In this section we define the data to input in Theorem 3.2, in order to obtain informations

on the eigenstates ψ~ and the measure µ. Only the Hilbert space is fixed, H
def
= L2(M). All

other data depend on the semiclassical parameter ~: the quantum partition π, the operator
O, the positive real number ε, the weights (αj), (βk) and the unitary operator U .

3.3.1. Smooth partition of unity. As usual when computing the Kolmogorov–Sinai entropy,
we start by decomposing the manifold M into small cells of diameter ε > 0. More precisely,
let (Ωk)k=1,...,K be an open cover of M such that all Ωk have diameters ≤ ε, and let
(Pk)k=1,...,K be a family of smooth real functions on M , with suppPk b Ωk, such that

(3.4) ∀x ∈M,

K
∑

k=1

P 2
k (x) = 1 .

Most of the time, the notation Pk will actually denote the operator of multiplication by
Pk(x) on the Hilbert space L2(M) = H: the above equation shows that they form a
quantum partition of unity (3.3), which we will call P(0).

3.3.2. Refinement of the partition under the Schrödinger flow. We denote by U t = exp(it~4 / 2)
the quantum propagator. With no loss of generality, we will assume that the injectivity
radius of M is greater than 2, and work with the propagator at time unity, U = U1. This
propagator quantizes the flow at time one, g1. The ~-dependence of U will be implicit in
our notations.

As one does to compute the Kolmogorov–Sinai entropy of an invariant measure, we define
a new quantum partition of unity by evolving and refining the initial partition P(0) under
the quantum evolution. For each time n ∈ N and any sequence of symbols ε = (ε0 · · · εn),
εi ∈ [1, K] (we say that the sequence ε is of length |ε| = n), we define the operators

Pε = Pεn(n)Pεn−1(n− 1) . . . Pε0 .(3.5)

Throughout the paper we will use the notation A(t) = U−tAU t for the quantum evolution
of an operator A. From (3.4) and the unitarity of U , the family of operators {Pε}|ε|=n
obviously satisfies the resolution of identity

∑

|ε|=n PεP
∗
ε

= IdL2, and therefore forms a

quantum partition which we call P(n).
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3.3.3. Energy localization. In the semiclassically setting, the eigenstate ψ~ of (2.2) is as-
sociated with the energy layer E = E(1/2) = {ρ ∈ T ∗M, H(ρ) = 1/2}. Starting from the
cotangent bundle T ∗M , we restrict ourselves to a compact phase space by introducing an
energy cutoff (actually, several cutoffs) near E . To optimize our estimates, we will need
this cutoff to depend on ~ in a sharp way. For some fixed δ ∈ (0, 1), we consider a smooth
function χδ ∈ C∞(R; [0, 1]), with χδ(t) = 1 for |t| ≤ e−δ/2 and χδ(t) = 0 for |t| ≥ 1. Then,
we rescale that function to obtain a family of ~-dependent cutoffs near E :

(3.6) ∀~ ∈ (0, 1), ∀n ∈ N, ∀ρ ∈ T ∗M, χ(n)(ρ; ~)
def
= χδ

(

e−nδ ~
−1+δ(H(ρ) − 1/2)

)

.

The cutoff χ(0) is localized in a tubular neighbourhood of E of width 2~
1−δ.

These cutoffs can be quantized into pseudodifferential operators Op(χ(n)) = OpE,~(χ
(n))

described in [3] (the quantization uses a nonstandard pseudodifferential calculus drawn
from [23]). The eigenstate ψ~ satisfies

(3.7) ‖
(

Op(χ(0)) − 1
)

ψ~‖ = O(~∞) ‖ψ~‖

(here and below, the norm ‖·‖ will either denote the Hilbert norm on H = L2(M), or the
corresponding operator norm).

In the whole paper, we fix a small δ′ > 2θ, and call “Ehrenfest time” the ~-dependent
integer

(3.8) nE(~)
def
=

⌊(1 − δ′)| log ~|

λmax

⌋

.

Unless indicated otherwise, the integer n will always be taken equal to this Ehrenfest time.
The significance of this time scale will be discussed in §3.3.7.

The following proposition says that the operator P ∗
ε

almost preserves the energy local-
ization (3.7) of ψ~ :

Proposition 3.3. For any L > 0, there exists ~L such that, for any ~ ≤ ~L, the Laplacian
eigenstate satisfies

(3.9) ∀ε, |ε| = n, ‖
(

Op(χ(n)) − Id
)

P ∗
ε
ψ~‖ ≤ ~

L‖ψ~‖ .

3.3.4. We now precise some of the data we will use in the entropic uncertainty principle,
Theorem 3.2:

• the quantum partition π is given by the family of operators {Pε, |ε| = n = nE(~)}.
In the semiclassical limit, this partition has cardinality N = Kn � ~

−K0 for some
fixed K0 > 0.

• the operator O is O = Op(χ(n)), and ε = ~
L, where L will be chosen very large (see

§3.3.6).
• the isometry will be U = Un = UnE(~).
• the weights αε, βε will be selected in §3.3.6. They will be semiclassically tempered,

meaning that there exists K1 > 0 such that, for ~ small enough, all αε, βε are
contained in the interval [1, ~−K1].
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As in Theorem 3.2, the entropy and pressures associated with a state ψ ∈ H are given by

hn(ψ) = hP(n)(ψ) = −
∑

|ε|=n

‖P ∗
ε
ψ‖2 log

(

‖P ∗
ε
ψ‖2

)

,(3.10)

pn,α(ψ) = hn(ψ) − 2
∑

|ε|=n

‖P ∗
ε
ψ‖2 logαε.(3.11)

We may apply Theorem 3.2 to any sequence of states satisfying (3.9), in particular the
eigenstates ψ~.

Corollary 3.4. Define

(3.12) cα,β
Opχ(n)(U

n)
def
= max

|ε|=|ε′|=n

(

αε βε
′‖P ∗

ε
′ Un Pε Op(χ(n))‖

)

.

Then for any normalized state φ satisfying (3.9),

pn,β(U
n φ) + pn,α(φ) ≥ −2 log

(

cα,β
Opχ(n)(U

n) + hL−K0−2K1

)

.

Most of [3] is devoted to obtaining a good upper bound for the norms ‖P ∗
ε
′ Un Pε Op(χ(n))‖

involved in the above quantity. The bound is given in Theorem 3.5 below. Our choice for
the weights αε, βε will then be guided by these upper bounds.

3.3.5. Unstable Jacobian for the geodesic flow. We need to recall a few definitions pertain-
ing to Anosov flows. For any λ > 0, the geodesic flow gt is Anosov on the energy layer
E(λ) = H−1(λ) ⊂ T ∗M . This implies that for each ρ ∈ E(λ), the tangent space TρE(λ)
splits into

TρE(λ) = Eu(ρ) ⊕Es(ρ) ⊕ RXH(ρ)

where Eu is the unstable subspace and Es the stable subspace. The unstable Jacobian
Ju(ρ) at the point ρ is defined as the Jacobian of the map g−1, restricted to the unstable
subspace at the point g1ρ: Ju(ρ) = det

(

dg−1
|Eu(g1ρ)

)

(the unstable spaces at ρ and g1ρ are

equipped with the induced Riemannian metric). This Jacobian can be “discretized” as

follows in a neighbourhood Eε
def
= E([1/2 − ε, 1/2 + ε]) of E . For any pair (ε0, ε1) ∈ [1, K]2,

we define

(3.13) Ju1 (ε0, ε1)
def
= sup

{

Ju(ρ) : ρ ∈ T ∗Ωε0 ∩ Eε, g1ρ ∈ T ∗Ωε1

}

if the set on the right hand side is not empty, and Ju1 (ε0, ε1) = e−R otherwise, where R > 0
is a fixed large number. For any sequence of symbols ε of length n, we define

(3.14) Jun (ε)
def
= Ju1 (ε0, ε1) . . . J

u
1 (εn−1, εn) .

Although Ju and Ju1 (ε0, ε1) are not necessarily everywhere smaller than unity, there exists
C, λ+, λ− > 0 such that, for any n > 0, for any ε with |ε| = n,

(3.15) C−1 e−n(d−1) λ+ ≤ Jun(ε) ≤ C e−n(d−1) λ− .

One can take λ+ = λmax(1 + ε). We can now give our central estimate, proven in [3].
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Theorem 3.5. Given a partition P(0) and δ, δ′ > 0 small enough, there exists ~P(0),δ,δ′ such
that, for any ~ ≤ ~P(0),δ,δ′, for any positive integer n ≤ nE(~), and any pair of sequences
ε, ε

′ of length n,

(3.16) ‖P ∗
ε
′ Un Pε Op(χ(n))‖ ≤ C ~

−(d−1+cδ) Jun(ε)1/2 Jun(ε′) .

The constants c, C only depend on the Riemannian manifold (M, g).

The theorem bounds from above the norm of the operator P ∗
ε
′ Un Pε Op(χ(n)). This norm

can be obtained as follows:

‖P ∗
ε
′ Un Pε Op(χ(n))‖ = sup

{

|〈Pε
′Φ, Un Pε Op(χ(n))Ψ〉| : Ψ, Φ ∈ H, ‖Ψ‖ = ‖Φ‖ = 1

}

.

The theorem is a corollary of the following estimate :

Proposition 3.6. For ~ small enough, any time n ≤ (1−δ′)| log ~|
λmax

, any sequences ε, ε
′ of

length n and any normalized states Ψ, Φ ∈ L2(M), one has

(3.17) |〈Pε
′ Op(χ(4n)) Φ, Un Pε Op(χ(n))Ψ〉| ≤ C ~

−(d−1)−cδ Jun (ε)1/2Jun(ε′) .

The constants C and c = 2 + 5/λmax only depend on the Riemannian manifold M .

The idea in Proposition 3.6 is rather simple, although the technical implementation
becomes cumbersome. We first show that any state of the form Op(χ)Ψ, as those appearing

in the scalar product (3.17), can be decomposed as a superposition of essentially ~
− (d−1)

2

normalized lagrangian states, supported on lagrangian manifolds transverse to the stable
leaves of the flow. In fact the lagrangian states we work with are truncated δ–functions,
supported on spheres S∗

zM . The action of the operator Un Pε = PεnUPεn−1U · · ·UPε0
on such lagrangian states is described by the theory of Fourier integral operators (WKB
methods), and is intuitively simple to understand : each application of U stretches the
lagrangian in the unstable direction (the rate of elongation being described by the unstable
Jacobian) whereas each multiplication by Pε cuts a small piece of lagrangian. This iteration
of stretching and cutting accounts for the exponential decay.

3.3.6. Applying the entropic uncertainty principle. There remains to choose the weights
(αε, βε) to use in Theorem 3.2. Our choice is guided by the following idea: in the quantity
(3.12), the weights should balance the variations (with respect to ε, ε′) in the norms, such
as to make all terms in (3.12) of the same order. Using the upper bounds (3.16), we end
up with the following choice for all ε of length n:

(3.18) αε

def
= Jun(ε)−1/2 and βε

def
= Jun (ε)−1 .

All these quantities are defined using the Ehrenfest time n = nE(~). From (3.15), there
exists K1 > 0 such that, for ~ small enough, all the weights are bounded by

(3.19) 1 ≤ |αε| ≤ ~
−K1, 1 ≤ |βε| ≤ ~

−K1 ,

as announced in §3.3.4.
The estimate (3.16) can then be rewritten as

cα,β
Opχ(n)(U

n) ≤ C ~
−(d−1+cδ) .
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We now apply Corollary 3.4 to the particular case of the eigenstates ψ~. We choose L large
enough such that ~

L−K0−2K1 is negligible in comparison with ~
−(d−1+cδ).

Proposition 3.7. Let (ψ~)~→0 be any sequence of eigenstates (2.2). Then, in the semi-
classical limit, the pressures of ψ~ satisfy

(3.20) pn,α(ψ~) + pn,β(ψ~) ≥ 2(d− 1 + cδ) log ~ + O(1) ≥ −2
(d− 1 + cδ)λmax

(1 − δ′)
n+ O(1) .

3.3.7. Subadditivity until the Ehrenfest time. Before taking the limit ~ → 0, we prove that
a similar lower bound holds if we replace n � | log ~| by some fixed no, and P(n) by the
corresponding partition P(no). This is due to the following subadditivity property, which is
the semiclassical analogue of the classical subadditivity of pressures for invariant measures.

Proposition 3.8 (Subadditivity). Let δ′ > 0. There is a function R(no, ~), and a real
number R > 0 independent of δ′, such that, for all integer no,

lim sup
~−→0

|R(no, ~)| ≤ R

and such that, for all no, n ∈ N with no+n ≤ nE(~) = (1−δ′)| log ~|
λmax

, for any (ψ~) normalized

eigenstates satisfying (2.2), the following inequality holds:

pno+n,α(ψ~) ≤ pno,α(ψ~) + pn−1,α(ψ~) +R(no, ~) .

A similar inequality holds for pno+n,β(ψ~).

The non–commutative dynamical system formed by (U t) acting on pseudodifferential
operators is (approximately) commutative on time intervals of length nE(~) :

‖[Op~(a)(t),Op~(b)]‖L2(M) = O(~cδ
′

),

for any time |t| ≤ nE(~). On such a time interval, it can be treated as a commutative
dynamical system, up to small errors tending to 0 with ~. This explains why the quantum
entropy (or pressure) pno+n,α(ψ~) has the same subadditivity property as the classical
entropy (3.1), up to small errors, as long as no+n remains bounded by the Ehrenfest time.

Thanks to this subadditivity, we may finish the proof of Theorem 2.4. Let no ∈ N be
fixed and n = nE(~). Using the Euclidean division n = q(no + 1) + r (with r ≤ no),
Proposition 3.8 implies that for ~ small enough,

pn,α(ψ~)

n
≤
pno,α(ψ~)

no
+
pr,α(ψ~)

n
+
R(no, ~)

no
.

Using (3.20) and the fact that pr,α(ψ~) + pr,β(ψ~) stays uniformly bounded (by a quantity
depending on no) when ~ → 0, we find

(3.21)
pno,α(ψ~)

no
+
pno,β(ψ~)

no
≥ −2

(d− 1 + cδ)λmax

(1 − δ′)
− 2

R(no, ~)

no
+ Ono

(1/n) .

We are now dealing with the partition P(no), n0 being fixed.
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3.3.8. End of the proof. Let us take a subsequence of (ψ~k
) such that the Wigner measures

Wk = Wψ~k
converge to a semiclassical measure µ on E , invariant under the geodesic flow

(see Prop. 1.2). We may take the limit ~k → 0 (so that n → ∞) in the above expression.
The norms appearing in the definition of hno

(ψ~k
) can be written as

(3.22) ‖P ∗
ε
ψ~k

‖ = ‖Pε0Pε1(1) · · ·Pεno
(no)ψ~k

‖ .

For any sequence ε of length no, the laws of pseudodifferential calculus imply the conver-
gence of ‖P ∗

ε
ψ~k

‖2 to µ({ε}), where {ε} is the function P 2
ε0 (P 2

ε1 ◦ g
1) . . . (P 2

εno
◦ gno) on

T ∗M . Thus hno
(ψ~k

) semiclassically converges to the classical entropy

hno
(µ) = hno

(µ, (P 2
k )) = −

∑

|ε|=no

µ({ε}) logµ({ε}) .

As a result, the left hand side of (3.21) converges to

(3.23)
2

no
hno

(µ) +
3

no

∑

|ε|=no

µ({ε}) log Juno
(ε) .

Since µ is gt-invariant and Juno
has the multiplicative structure (3.14), the second term in

(3.23) can be simplified:

∑

|ε|=no

µ({ε}) log Juno
(ε) = no

∑

ε0,ε1

µ({ε0ε1}) log Ju1 (ε0, ε1) .

We have thus obtained the lower bound

(3.24)
hno

(µ)

no
≥ −

3

2

∑

ε0,ε1

µ({ε0ε1}) log Ju1 (ε0, ε1) −
(d− 1 + cδ)λmax

(1 − δ′)
− 2

R

n o
.

δ and δ′ could be taken arbitrarily small, and at this stage they can be let vanish.

The Kolmogorov–Sinai entropy of µ is by definition the limit of the first term hno (µ)
no

when no goes to infinity, with the notable difference that the smooth functions Pk should
be replaced by characteristic functions associated with some partition of M , M =

⊔

kQk.
Thus, let us consider such a partition of diameter ≤ ε/2, such that µ does not charge the
boundaries of the Qk. By convolution we can smooth the characteristic functions (1lQk

)
into a smooth partition of unity (Pk = 1lsmQk

) satisfying the conditions of section 3.3.1. The

lower bound (3.24) holds with respect to the smooth partition (P 2
k ), and does not depend

on the derivatives of the Pk: as a result, the same bound carries over to the characteristic
functions (1lQk

).
We can finally let no tend to +∞, then let the diameter ε/2 of the partition tend to 0.

From the definition (3.13), the first term in the right hand side of (3.24) converges to the
integral −3

2

∫

E
log Ju(ρ)dµ(ρ) as ε→ 0, which proves (2.3).

�
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4. Concluding remark.

In the course of the proof, we evaluated the entropy of ψ~ at a finite time nE(~) −→
~−→0

+∞

called the Ehrenfest time : it is the largest time interval on which the Schrödinger flow
acting on ~–pseudodifferential operators can be treated as a commutative dynamical sys-
tem.

In constant curvature, we were lucky to find that the Ehrenfest time is large enough
to capture positive entropy. In other words, for n = nE(~), the upper bound (3.17) is a
positive power of ~.

In variable curvature, due to the fact that the Lyapunov exponents are not the same
everywhere, the Ehrenfest time should be defined as a quantity depending of the point in
phase space, and we took for nE(~) the infimum of all these “local” Ehrenfest times. This is
certainly not a sharp way of dealing with the Ehrenfest time issue. It can now happen that
the upper bound (3.17) is a negative power of ~, in which case it contains no information.

The method of [1] was much less sensitive to the lack of optimality of certain estimates,
since it required to evaluate the entropy much beyond the Ehrenfest time
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