Construction de solutions pour les équations de Korteweg-de Vries généralisées
Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2006-2007), Exposé no. 3, 17 p.
@article{SEDP_2006-2007____A3_0,
     author = {C\^ote, Rapha\"el},
     title = {Construction de solutions pour les \'equations de {Korteweg-de} {Vries} g\'en\'eralis\'ees},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"},
     note = {talk:3},
     pages = {1--17},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2006-2007},
     mrnumber = {2385190},
     language = {fr},
     url = {https://www.numdam.org/item/SEDP_2006-2007____A3_0/}
}
TY  - JOUR
AU  - Côte, Raphaël
TI  - Construction de solutions pour les équations de Korteweg-de Vries généralisées
JO  - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
N1  - talk:3
PY  - 2006-2007
SP  - 1
EP  - 17
PB  - Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - https://www.numdam.org/item/SEDP_2006-2007____A3_0/
LA  - fr
ID  - SEDP_2006-2007____A3_0
ER  - 
%0 Journal Article
%A Côte, Raphaël
%T Construction de solutions pour les équations de Korteweg-de Vries généralisées
%J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
%Z talk:3
%D 2006-2007
%P 1-17
%I Centre de mathématiques Laurent Schwartz, École polytechnique
%U https://www.numdam.org/item/SEDP_2006-2007____A3_0/
%G fr
%F SEDP_2006-2007____A3_0
Côte, Raphaël. Construction de solutions pour les équations de Korteweg-de Vries généralisées. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2006-2007), Exposé no. 3, 17 p. https://www.numdam.org/item/SEDP_2006-2007____A3_0/

[1] Michael Christ and Michael I. Weinstein, Dispersion of small amplitudes solutions of the generalized Korteweg-de Vries equation, J. Funct. Anal. 100 (1991), 87–109. | MR | Zbl

[2] Raphaël Côte, Construction of solutions to the L2-critical KdV equation with a given asymptotic behaviour, Duke Math. J., to appear. | MR | Zbl

[3] —, Construction of solutions to the subcritical gKdV equations with a given asymptotical behaviour, J. Funct. Anal. (2006), no. 241, 143–211. | MR | Zbl

[4] —, Large data wave operator for the generalized Korteweg-de Vries equations, Differential Integral Equations 19 (2006), no. 2, 163–188. | MR

[5] Wiktor Eckhaus and Peter Schuur, The emergence of solutions of the Korteweg-de Vries equation form arbitrary initial conditions, Math. Methods Appl. Sci. 5 (1983), 97–116. | MR | Zbl

[6] Nakao Hayashi and Pavel I. Naumkin, Large time asymptotics of solutions to the generalized Korteweg-De Vries equation, J. Funct. Anal. 159 (1998), 110–136. | MR | Zbl

[7] Carlos E. Kenig, Gustavo Ponce, and Luis Vega, Well-posedness and scattering result for the generalized Korteweg-De Vries equation via contraction principle, Comm. Pure Appl. Math. 46 (1993), 527–620. | MR | Zbl

[8] —, On the concentration of blow up solutions for the generalized KdV equation critical in L2, Nonlinear wave equations (Providence, RI, 1998), Contemp. Math., vol. 263, Amer. Math. Soc., Providence, RI, 2000, pp. 131–156. | MR | Zbl

[9] Yvan Martel, Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations, Amer. J. Math. 127 (2005), no. 5, 1103–1140. | MR | Zbl

[10] Yvan Martel and Frank Merle, A Liouville theorem for the critical generalized Korteweg-de Vries equation, J. Math. Pures Appl. (9) 79 (2000), 339–425. | MR | Zbl

[11] —, Asymptotic stability of solitons for subcritical generalized KdV equations., Arch. Ration. Mech. Anal. 157 (2001), no. 3, 219–254. | MR | Zbl

[12] —, Blow up in finite time and dynamics of blow up solutions for the L2-critical generalized KdV equations, J. Amer. Math. Soc. 15 (2002), 617–664. | MR | Zbl

[13] —, Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized kdv equation, Ann. of Math. (2) 1 (2002), 235–280. | MR | Zbl

[14] Yvan Martel, Frank Merle, and Tai-Peng Tsai, Stability and asymptotic stability in the energy space of the sum of n solitons for subcritical gKdV equations, Comm. Math. Phys. 231 (2002), 347–373. | MR | Zbl

[15] Frank Merle, Existence of blow-up solutions in the energy space for the critical generalized Korteweg-de Vries equation, J. Amer. Math. Soc. 14 (2001), 555–578. | MR | Zbl

[16] Robert M. Miura, The Korteweg-de Vries equation : a survey of results, SIAM Rev. 18 (1976), 412–459. | MR | Zbl

[17] Gustavo Ponce and Luis Vega, Nonlinear small data scattering for the generalized Korteweg-de Vries equation, J. Funct. Anal. 90 (1990), 445–457. | MR | Zbl

[18] Mohammed A. Rammaha, On the asymptotic behavior of solutions of generalized Korteweg-de Vries equation, J. Math. Anal. Appl. 140 (1989), no. 1, 228–240. | MR | Zbl

[19] Peter Cornelis Schuur, Asymptotic analysis of soliton problems, Lecture Notes in Mathematics, vol. 1232, Springer-Verlag, Berlin, 1986, An inverse scattering approach. | MR | Zbl

[20] Walter A. Strauss, Dispersion of low-energy waves for two conservative equations, Arch. Ration. Mech. Anal. 55 (1974), 86–92. | MR | Zbl