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Abstract

In this paper, we present a nonlinear model for laser-plasma interaction

describing the Raman amplification. This system is a quasilinear coupling of

several Zakharov systems. We handle the Cauchy problem and we give some

well-posedness and ill-posedness result for some subsystems.

1 Introduction

Powerful laser are used in laboratory in order to simulate nuclear fusion using inertial
confinement. During this process, a plasma is created which interacts nonlinearly
with the laser. The aim of this paper is to construct and study some nonlinear
systems describing the interaction. The more precise models that can be used for
describing laser-plasma interaction are probably the kinetic ones. These models
involve several distribution functions depending on 7 variables (time, 3 space di-
mensions and 3 dimensional space for the velocities). The associated computational
cost for the application to fusion by inertial confinement are clearly out of reach for
the moment. Therefore, one has to used simplified models. The fluid models seems
to be more adapted since the physical quantities only depend on 4 variables. How-
ever, for practical applications, one has to use very small time and space scales and
numerical simulations in 3D on reasonable space domains are impossible. This is
why, Zakharov in the 70’s has introduced a new type of systems obtained thanks the
so-called envelope approximation [27]. Such a typical system reads in dimensionless
form:







i∂t∇ψ + ∆(∇ψ) = ∇∆−1div(δn∇ψ),

∂2
t δn− ∆δn = ∆(|∇ψ|2).

(1.1)

This system has been studied in [4, 8, 9]. Of course, variations of this systems exists
(see [24] for example). The above system describe the evolution of the electronic
plasma waves that are fundamental is the study of nonlinear plasma physics. Note
that this system is the equivalent of the Davey-Stewartson system for the study of
water-waves see [11]. One of the main instability which has to be undergone is the
Raman instability: when the laser pulse enter the plasma, another laser component
is created (the Raman component). These two components interact and create some
electronic plasma waves. This is a three waves mixing system that is unstable. The
high-frequency waves interact nonlinearly and create some ionic acoustic waves. Of
course there is a retroaction of the acoustic part to the high frequency parts. Below,
we will recall the derivation of such a system initiated in [5].
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2 Derivation of the main model

We start from the bifluid Euler-Maxwell systems that reads:

∂tB + c∇×E = 0, (2.1)

∂tE − c∇× B = 4πe ((n0 + ne)ve − (n0 + ni)vi) , (2.2)

(n0 + ne) (∂tve + ve · ∇ve) = −
γeTe

me

∇ne −
e(n0 + ne)

me

(E +
1

c
ve ×B), (2.3)

(n0 + ni) (∂tvi + vi · ∇vi) = −
γiTi

mi

∇ni +
e(n0 + ni)

mi

(E +
1

c
vi ×B), (2.4)

∂tne + ∇ · ((n0 + ne)ve) = 0, (2.5)

∂tni + ∇ · ((n0 + ni)vi) = 0. (2.6)

The unknowns are :
• E and B are respectively the electric and magnetic field.
• ve and vi denote respectively the velocity of electrons and ions.
• n0 is the mean density of the plasma.
• ne and ni are the variation of density respectively of electrons and ions with

respect to the mean density n0.
The constants are :

• c is the velocity of light in the vacuum; e is the elementary electric charge.
• me and mi are respectively the electron’s and ion’s mass.
• Te and Ti are respectively the electronic and ionic temperature and γe and γi

the thermodynamic coefficients.
For a precise description of this kind of model, see classical textbooks [12]. One of
the main points is that the mass of the electrons is very small compared to the mass
of the ions : me � mi. Since the Lorentz force is the same for the ions and the
electrons, the velocity of the ions will be neglectable with respect to the velocity of
the electrons. The consequence is that we neglect the contribution of the ions in
equation (2.2).

The first step is then to study the linearized version around 0 of this system and
we write a decomposition of the field as a sum of a longitudinal part and a transverse
one: B = B‖+B⊥ with ∇×B‖ = 0 and ∇·B⊥ = 0. Similar decompositions are used
for E and ve. The longitudinal part gives the equations for the electronic plasma
waves:

∂tB‖ = 0, ∂tE‖ = 4πen0ve‖,

∂tve‖ = −
γeTe

men0
∇ne −

e

me
E‖, ∂tne + n0∇ · ve‖ = 0.

Combining these equations leads to

[

∂2
t − v2

th∆ + ωpe
2
]

ve‖ = 0, (2.7)
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where ωpe =
√

4πe2n0

me
is the plasma frequency and vth =

√

γeTe

me
is the thermal velocity

of the plasma. Equation (2.7) gives the following dispersion relation:

ω2 = ω2
pe + k2v2

th. (2.8)

The same manipulation concerning transverse waves leads to the system for electro-
magnetic waves:

∂tB⊥ + c∇× E⊥ = 0

∂tE⊥ − c∇×B⊥ = 4πen0ve⊥

∂tve⊥ = −
e

me
E⊥

which reduces to
∂2

tE⊥ − c2∆E⊥ + ω2
peE⊥ = 0. (2.9)

The associated dispersion relation is

ω2 = ω2
pe + k2c2. (2.10)

For the applications that we have in mind, vth is at least one order of magnitude
smaller than c. Therefore, the characteristic variety associated to (2.8) is very flat
compared to that of (2.10) and the electromagnetic waves have a different status
than that of electronic plasma waves. The electromagnetic waves have to be thought
under the form: ei(kx−ωt)E⊥(t, x) with ∂tE⊥ � ωE⊥ and ∂xE⊥ � kE⊥,
whereas the electronic plasma waves have to be search under the form e−iωpetE||

with ∂tE|| � ωpeE||. In order to obtain a nonlinear model, one needs to perform a
weakly nonlinear analysis leading to the equations satisfied by the amplitude during
the three waves interaction. The interaction between the 3 waves is effective if the
following resonance conditions are satisfied:

K0 = KR +K1, ω0 = ωR + ωpe + ω1,

where (KR, ωR) and (K0, ω0) satisfy

ω2 = ω2
pe +K2c2

and (K1, ωpe + ω1) satisfies

(ωpe + ω1)
2 = ω2

pe + v2
thK

2
1 .

Note that (K0, ω0) denote the wave vector and the frequency of the laser pulse,
(KR, ωR) those of the Raman component while (K1, ωpe + ω1) are those of the elec-
tronic plasma waves. The different waves are then written as follows. The incident
laser pulse has a vector potential given by ALe

i(k0z−ω0t) + c.c., where c.c. stands
for the complex conjugate. The Raman component has a vector potential given
byARe

i(kRz−ωRt) + c.c.. The electronic plasma wave is described thanks to the elec-
tric field: E0e

−iωpet + c.c.
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The low-frequency modulation of the density of ions is denoted by p.

The electric field is then recovered by the following formula

E =
iω0

c
AL(t, x, y, z)ei(k0z−ω0t) +

iωR

c
AR(t, x, y, z)ei(kRz−ωRt)

+E0(t, x, y, z)e
−iωpet + c.c.

A WKB-type expansion give the amplitude system that is given at the end of
this paper. Here we assume that the vectors K0, KR and K1 are colinear along the
direction of the z variable. For some extension, see [7]. The structure of this system
is:

i



∂t +





v1

v2

0



 ∂z









AL

AR

E0



 + ∆





AL

AR

E0





= p





AL

AR

E0



 +





−∇ · E0ARe
−i(k1z−ω1t)

−∇ · E∗
0ALe

i(k1z−ω1t)

∇(A∗
R · ALe

i(k1z−ω1t))





(

∂2
t − ∆

)

p = ∆
(

|AL|
2 + |AR|

2 + |E0|
2
)

(2.11)

3 Some result for the Cauchy problem

System (2.11) is an extension of

i∂tE + ∆E = pE,

∂2
t p− ∆p = ∆|E|2

(3.1)

which is the original Zakharov system. The Cauchy problem is now well understood
see [1, 13, 20, 25, 23] for example, [14, 15] for blowing-up solutions. Basically,
the system is well-posed for smooth enough initial data. Note that a huge physical
literature exists concerning the computations of the solutions of (3.1) see for example
[21, 22] and their references. The asymptotic expansion leading to (3.1) starting from
the Euler-Maxwell system has been justified by B. Texier in [26]. One can see [16]
for the numerical analysis of this system.

Furthermore, system (2.11) is also an extension of

(i(∂t + ∂z) + ∆⊥)A = pA,

∂2
t p− ∆⊥p = ∆⊥|A|

2.
(3.2)

The Cauchy problem for system (3.2) is more subtile. Lineares, Ponce and Saut
have proved in [18] that
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Theorem 3.1. System (3.2) is locally well-posed in Hs(Rn) for s large enough.

The proof makes use of local and global smoothing effects for the linear Schrödinger
operator that correspond to the dispersive properties of the equation in the spirit of
[17].

If one consider the case of periodic boundary conditions, the result is drastically
different [10]:

Theorem 3.2. System (3.2) is locally ill-posed in Hs(Tn) in the sense that for
any s, there exist a sequence of times Tk tending to zero and families of solutions
(A, 0) + (Ak, pk), in C1([0, Tk];H

s(Tn)) such that

‖Ak(0), pk(0), ∂tpk(0)‖Hs(Tn) → 0,
‖Ak(Tk), pk(Tk)‖L2(Tn) → ∞.

where T denotes the torus of R
n.

This result is typically a result of geometrical optics type.
Now, we look at the complete system (2.11). The difficulties of (3.1) and (3.2)

are of course included. Another difficulty comes anyway from the quasilinear terms
∇ · E0AR, ·E∗

0AL, ∇(A∗
R · AL). This quasilinear part is not hyperbolic. Indeed,

consider the one-D, real version of the system. Writing AL = u1+iu2, AR = u3+iu4,
E0 = u5 + iu6, the quasilinear part of (2.11) reads:

∂t

















u1

u2

u3

u4

u5

u6

















= M∂x

















u1

u2

u3

u4

u5

u6

















with

M =

















0 0 0 0 −u4 −u3

0 0 0 0 u3 −u4

0 0 0 0 −u2 u1

0 0 0 0 u1 u2

−u4 u3 u2 −u1 0 0
−u3 −u4 −u1 −u2 0 0

















Clearly, the blocks involving u1 and u2 will give complex eigenvalues that lead
to an Hadamar instability. We overcome this difficulty using the dispersive terms
as follows [5]. We then prove:

Theorem 3.3. System (2.11) is locally well-posed in Hs(Rn) or in Hs(Tn) for s
large enough.
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We explain below the key point of our argument. The difficult part of (2.11) lies
in the blocks involving u1 and u2. In complex form, this reads

∂tA− i∂2
xA = +iP∂xE

∂tE + i∂2
xE = +iP ∗∂xA

where P is a pump wave considered as being a constant in this computation. The

symbol of this system is then





iξ2 −Pξ

−P ∗ξ −iξ2



 and the eigenvalues iω satisfy

ω2 = ξ4 − |P |2ξ2

and are real for large ξ. It is a kind of dispersive stabilization and there is an analogy
with Kuramoto-Shivashinski equation. Of course, this is not a proof. A detailed
proof can be found in [5].

4 A numerical scheme

We perform numerical simulations for system (2.11) by using a numerical scheme
inspired from that of [3] for the nonlinear Schrödinger equation. We use this kind
of scheme for the following reasons:
i) One can not use splitting schemes because of the quasilinear part that is not
hyperbolic (this will lead to an unstable step in the splitting).
ii) The following quantity is a conserved quantity of the continuous system

∫

2|AL|
2 + |AR|

2 + |E0|
2(t) = Cte

and should be also conserved by the numerical scheme.
iii) One need to handle at the same step dispersion and nonlinearity since the exis-
tence proof is done using this method.

Let us recall how Besse’s scheme is written on the nonlinear Schrödinger equation:

i∂tu+ ∆u = |u|2u.

One introduces the following discretization

i
un+1 − un

δt
+ ∆

un+1 + un

2
= ϕn+1/2u

n+1 + un

2

where
ϕn+1/2 + ϕn−1/2

2
= |un|2.

This scheme is at least formally of second order. In order to initialize the scheme,
we need a value for ϕ−1/2 in order to be able to compute ϕ1/2. SInce ϕn+1/2 is some
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kind of prediction of |u|2 at time (n+1/2)∗dt, we take ϕ−1/2 = |u−1/2|2 where u−1/2

is given by an half time-step backward by the explicit Euler scheme.
We now adapt our scheme to our case. We present below the 1-D version, it can

be extended to multi-D [6]. We need to introduce two new unknowns, the first one
ϕ corresponding to ∂yE and ψ corresponding to AR as follows:

The equation for AL is discretized as:

i
An+1

L −An
L

δt
+

(

iv1∂y + ∂2
y

)An+1
L + An

L

2

=

(

pn+1 + pn

2

)

An+1
L + An

L

2
−

1

2
ϕn+1/2A

n+1
R + An

R

2
e−iθn+1/2

−
1

2
ψn+1/2∂yE

n+1 + ∂yE
n

2
e−iθn+1/2

,

where
ϕn+1/2 + ϕn−1/2

2
= ∂yE

n,

and
ψn+1/2 + ψn−1/2

2
= An

R,

The scheme for AR is:

i
An+1

R − An
R

δt
+

(

iv2∂y + ∂2
y

)An+1
R + An

R

2

=

(

pn+1 + pn

2

)

An+1
R + An

R

2
− (ϕn+1/2)∗

An+1
L + An

L

2
eiθn+1/2

with
ϕn+1/2 + ϕn−1/2

2
= ∂yE

n.

The scheme for E is:

i
En+1 −En

δt
+ ∂2

y

(

En+1 + En

2

)

=
1

2

(

pn+1 + pn

2

) (

En+1 + En

2

)

+ ∂y

[

(ψn+ 1

2 )∗
(

An+1
C + An

C

2

)

eiθn+ 1
2

]

.

The discretization for the equation of p is the scheme introduced by Glassey [16]
for the Zakharov system:

pn+1 − 2pn + pn−1

δt2
− ∂2

y

(

pn+1 + pn−1

2

)

= ∂2
y

(

|En|2 + |An
C |

2 + |An
R|

2
)

.

A typical result is give in fig. 1. See [6] for more results and extensions.
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Figure 1: Case 1, 1-D geometry. Modulus of the fields at time t = n
100

8
for

n = 0 · · · 8 with AC(0) = 0.3e−0.01(x−40)2 , ω1

ω0
= 0.01561. First line, from left to right,

n = 0, 1, 2, second line, from left to right, n = 3, 4, 5, third line, from left to right,
n = 6, 7, 8. The continuous line corresponds to AC , the dashed line to AR and the
semi-doted line to E. The value of ω1 corresponds to the resonant case.

Moreover, the Raman amplification is one of the main cause of the Landau
damping phenomena which is a wave-particule interaction. Landau damping is a
kinetic phenomena and therefore can not be obtain in our framework starting from
the fluid equations. It can be however modelized using a diffusion equation coupled
to a Zakharov type system [2].
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