@article{SEDP_2005-2006____A24_0, author = {Hitrik, Michael}, title = {Lagrangian tori and spectra for non-selfadjoint operators (based on joint works with {J.} {Sj\"ostrand} and {S.} {V\~{u}} {Ngọc)}}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:24}, pages = {1--14}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2005-2006}, mrnumber = {2276088}, language = {en}, url = {http://www.numdam.org/item/SEDP_2005-2006____A24_0/} }
TY - JOUR AU - Hitrik, Michael TI - Lagrangian tori and spectra for non-selfadjoint operators (based on joint works with J. Sjöstrand and S. Vũ Ngọc) JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:24 PY - 2005-2006 SP - 1 EP - 14 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://www.numdam.org/item/SEDP_2005-2006____A24_0/ LA - en ID - SEDP_2005-2006____A24_0 ER -
%0 Journal Article %A Hitrik, Michael %T Lagrangian tori and spectra for non-selfadjoint operators (based on joint works with J. Sjöstrand and S. Vũ Ngọc) %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:24 %D 2005-2006 %P 1-14 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://www.numdam.org/item/SEDP_2005-2006____A24_0/ %G en %F SEDP_2005-2006____A24_0
Hitrik, Michael. Lagrangian tori and spectra for non-selfadjoint operators (based on joint works with J. Sjöstrand and S. Vũ Ngọc). Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2005-2006), Exposé no. 24, 14 p. http://www.numdam.org/item/SEDP_2005-2006____A24_0/
[1] L. Boutet de Monvel and J. Sjöstrand, Sur la singularité des noyaux de Bergman et de Szegö, Journées Équations aux Dérivées Partielles de Rennes (1975), Astérisque 34–35 (1976), 123–164. | Numdam | MR | Zbl
[2] H. Broer and G. B. Huitema, A proof of the isoenergetic KAM theorem from the “ordinary” one, Journal of Differential Equations, 90 (1991), 52–60. | Zbl
[3] N. Burq and M. Hitrik, Energy decay for damped wave equations on partially rectangular domains, Math. Research Letters, to appear. | MR | Zbl
[4] Y. Colin de Verdière, Quasi-modes sur les variétés riemanniennes, Inv. Math. 43 (1977), 15–52. | MR | Zbl
[5] Y. Colin de Verdière, Sur le spectre des opérateurs elliptiques a bicaractéristiques toutes periodiques, Comment Math. Helv. 54 (1979), 508-522. | MR | Zbl
[6] Y. Colin de Verdière, Méthodes semi-classiques et théorie spectrale, Cours de DEA, Institut Fourier, 1992.
[7] Y. Colin de Verdière and S. Vũ Ngọc, Singular Bohr-Sommerfeld rules for 2D integrable systems, Ann. Sci. École Norm. Sup. 36 (2003), 1–55. | Numdam | MR | Zbl
[8] N. Dencker, J. Sjöstrand, and M. Zworski, Pseudospectra of semiclassical (pseudo)differential operators, Comm. Pure Appl. Math. 57 (2004), 384–415. | MR | Zbl
[9] M. Dimassi and J. Sjöstrand, Spectral asymptotics in the semi-classical limit, Cambridge University Press, Cambridge, 1999. | MR | Zbl
[10] I. C. Gohberg and M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Translations of Mathematical Monographs, Vol. 18 American Mathematical Society, Providence, R.I. 1969. | MR | Zbl
[11] M. Hitrik, Eigenfrequencies for damped wave equations on Zoll manifolds, Asymptot. Analysis, 31 (2002), 265–277. | MR | Zbl
[12] M. Hitrik and J. Sjöstrand, Non-selfadjoint perturbations of selfadjoint operators in 2 dimensions I, Ann. Henri Poincaré 5 (2004), 1–73. | MR | Zbl
[13] M. Hitrik and J. Sjöstrand, Non-selfadjoint perturbations of selfadjoint operators in 2 dimensions II. Vanishing averages, Comm. Partial Differential Equations 30 (2005), 1065–1106. | MR | Zbl
[14] M. Hitrik and J. Sjöstrand, Non-selfadjoint perturbations of selfadjoint operators in 2 dimensions III a. One branching point, submitted. | Zbl
[15] M. Hitrik and J. Sjöstrand, Rational tori and spectra for non-selfadjoint operators in dimension 2, in preparation.
[16] M. Hitrik, J. Sjöstrand, and S. Vũ Ngọc, Diophantine tori and spectral asymptotics for non-selfadjoint operators, American Journal of Mathematics, to appear.
[17] V. Ivrii, Microlocal analysis and precise spectral asymptotics, Springer–Verlag, Berlin, 1998. | MR | Zbl
[18] N. Kaidi and P. Kerdelhué, Forme normale de Birkhoff et résonances, Asymptot. Analysis, 23 (2000), 1–21. | MR | Zbl
[19] H. Koch and D. Tataru, On the spectrum of hyperbolic semigroups, Comm. Partial Differential Equations 20 (1995), 901–937. | MR | Zbl
[20] V. F. Lazutkin, KAM theory and semiclassical approximations to eigenfunctions. With an Addendum by A. I. Shnirelman. Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, Berlin, 1993. | MR | Zbl
[21] G. Lebeau, Equation des ondes amorties. Algebraic and geometric methods in mathematical physics (Kaciveli 1993), 73–109, Math. Phys. Stud., 19, Kluwer Acad. Publ., Dordrecht, 1996. | MR | Zbl
[22] A. J. Lichtenberg and M. A. Lieberman, Regular and chaotic dynamics, Second edition. Springer–Verlag, New York, 1992. | MR | Zbl
[23] A. S. Markus, Introduction to the spectral theory of polynomial operator pencils, Translations of Mathematical Monographs 71, American Mathematical Society, Providence RI, 1998. | MR | Zbl
[24] A. Melin and J. Sjöstrand, Determinats of pseudodifferential operators and complex deformations of phase space, Methods and Applications of Analysis 9 (2002), 177–238. | MR | Zbl
[25] A. Melin and J. Sjöstrand, Bohr-Sommerfeld quantization condition for non-selfadjoint operators in dimension 2, Astérisque 284 (2003), 181–244. | MR | Zbl
[26] G. Popov, Invariant tori, effective stability, and quasimodes with exponentially small error terms. I. Birkhoff normal forms, Ann. Henri Poincaré 1 (2000), 223–248. | MR | Zbl
[27] G. Popov, Invariant tori, effective stability, and quasimodes with exponentially small error terms. II. Quantum Birkhoff normal forms, Ann. Henri Poincaré 1(2000), 249–279. | MR | Zbl
[28] J. Rauch and M. Taylor, Decay of solutions to nondissipative hyperbolic systems on compact manifolds, Comm. Pure Appl. Math. 28 (1975), 501–523. | MR | Zbl
[29] J. Sjöstrand, Singularités analytiques microlocales, Astérisque, 1982. | Numdam | MR | Zbl
[30] J. Sjöstrand, Function space associated to global –Lagrangian manifolds, Structure of solutions of differential equations (Katata/Kyoto, 1995), 369–423, World Sci. Publishing, River Edge, NJ, 1996. | MR | Zbl
[31] J. Sjöstrand, Asymptotic distribution of eigenfrequencies for damped wave equations, Publ. Res. Inst. Math. Sci. 36 (2000), 573–611. | MR | Zbl
[32] J. Sjöstrand, Perturbations of selfadjoint operators with periodic classical flow, RIMS Kokyuroku 1315 (April 2003), “Wave Phenomena and asymptotic analysis”, 1–23.
[33] J. Sjöstrand and M. Zworski, Asymptotic distribution of resonances for convex obstacles, Acta Math. 183 (1999), 191–253. | MR | Zbl
[34] A. Weinstein, Asymptotics of eigenvalue clusters for the Laplacian plus a potential, Duke Math. J. 44 (1977), 883–892. | MR | Zbl