In this survey, we present various forms of the uncertainty principle (Hardy, Heisenberg, Benedicks...). We further give a new interpretation of the uncertainty principles as a statement about the time-frequency localization of elements of an orthonormal basis, which improves previous unpublished results of H. Shapiro.
Finally, we reformulate some uncertainty principles in terms of properties of the free heat and shrödinger equations.
Mots clés : Uncertainty principles, orthonormal bases
@article{SEDP_2005-2006____A15_0, author = {Jaming, Philippe}, title = {Uncertainty principles for orthonormal bases}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:15}, pages = {1--14}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2005-2006}, mrnumber = {2276080}, language = {en}, url = {http://www.numdam.org/item/SEDP_2005-2006____A15_0/} }
TY - JOUR AU - Jaming, Philippe TI - Uncertainty principles for orthonormal bases JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:15 PY - 2005-2006 SP - 1 EP - 14 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://www.numdam.org/item/SEDP_2005-2006____A15_0/ LA - en ID - SEDP_2005-2006____A15_0 ER -
%0 Journal Article %A Jaming, Philippe %T Uncertainty principles for orthonormal bases %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:15 %D 2005-2006 %P 1-14 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://www.numdam.org/item/SEDP_2005-2006____A15_0/ %G en %F SEDP_2005-2006____A15_0
Jaming, Philippe. Uncertainty principles for orthonormal bases. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2005-2006), Exposé no. 15, 14 p. http://www.numdam.org/item/SEDP_2005-2006____A15_0/
[AB] W. O. Amrein & A. M. Berthier On support properties of -functions and their Fourier transforms. J. Functional Analysis 24 (1977), 258–267. | MR | Zbl
[Ba] R. Balian Un principe d’incertitude fort en théorie du signal ou en mécanique quantique. C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre 292 (1981), 1357–1362.
[Be] M. Benedicks On Fourier transforms of functions supported on sets of finite Lebesgue measure. J. Math. Anal. Appl. 106 (1985), 180–183. | MR | Zbl
[BD] A. Bonami & B. Demange A survey on the uncertainty principle for quadratic forms à parraiître dans Collecteana Math.
[BDJ] A. Bonami, B. Demange & Ph. Jaming Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms. Rev. Mat. Iberoamericana 19 (2003), 23–55 | MR | Zbl
[CP] M. G. Cowling & J. F. Price Bandwidth versus time concentration: the Heisenberg-Pauli-Weyl inequality. SIAM J. Math. Anal. 15 (1984) 151–165. | MR
[dB] N. G. de Bruijn Uncertainty principles in Fourier analysis. in Inequalities. (O. Shisha, ed.) Academic Press, New York (1967) 55–71. | MR
[De] B. Demange Principes d’incertitude associés à des formes quadratiques non dégénérées Thèse de l’université d’Orléans, 2004.
[DGS] P. Delsarte, J. M. Goethals & J. J. Seidel Spherical codes and designs Geometrica Dedicata 6 (1977) 363–388. | MR | Zbl
[EKV] L. Escauriaza, C. E. Kenig & L. Vega Decay at infinity of caloric functions within characteristic hyperplane. preprint.
[EKPV] L. Escauriaza, C. E. Kenig, G. Ponce & L. Vega On unique continuation for Schroedinger equation. to appear in Comm. Part. Diff. Eq.
[Fa] W.G. Faris Inequalities and uncertainty principles. J. Math. Phys. 19 (1978), 461–466. | MR
[FS] G. B. Folland & A. Sitaram The uncertainty principle — a mathematical survey. J. Fourier Anal. Appl. 3 (1997), 207–238. | MR | Zbl
[Ha] G. H. Hardy A theorem concerning Fourier transforms. J. London Math. Soc. 8 (1933), 227–231. | Zbl
[HJ] V. Havin & B. Jöricke The uncertainty principle in harmonic analysis. Springer-Verlag, Berlin, 1994. | MR | Zbl
[JP] Ph. Jaming & A. Powell Uncertainty principles for orthonormal bases. preprint 2006.
[Ko] O. Kovrijkine Some results related to the Logvinenko-Sereda theorem. Proc. Amer. Math. Soc. 129 (2001) 3037–3047. | MR | Zbl
[Lo] F. Low Complete sets of wave packets. in A Passion for Physics—Essays in Honor of Geoffrey Chew, edited by C. DeTar et al. (World Scientific, Singapore, 1985), pp. 17–22.
[LP1] H. J. Landau & H. O. Pollak, Prolate spheroidal wave functions, Fourier analysis and uncertainty. II. Bell System Tech. J. 40 (1961), 65–84. | MR | Zbl
[LP2] H. J. Landau & H. O. Pollak, Prolate spheroidal wave functions, Fourier analysis and uncertainty. III. The dimension of the space of essentially time- and band-limited signals. Bell System Tech. J. 41 (1962), 1295–1336. | MR | Zbl
[LS] V. N. Logvinenko & Ju. F. Sereda, Equivalent norms in spaces of entire functions of exponential type. (Russian) Teor. FunkciĭFunkcional. Anal. i Priložen. Vyp. 20 (1974), 102–111, 175. | MR | Zbl
[Na] F. L. Nazarov Local estimates for exponential polynomials and their applications to inequalities of the uncertainty principle type. (Russian) Algebra i Analiz 5 (1993), 3–66; translation in St. Petersburg Math. J. 5 (1994), 663–717. | MR | Zbl
[Pa1] B. Paneah Support-dependent weighted norm estimates for Fourier transforms. J. Math. Anal. Appl. 189 (1995), 552–574. | MR | Zbl
[Pa2] B. Paneah Support-dependent weighted norm estimates for Fourier transforms. II. Duke Math. J. 92 (1998), 35–353. | MR | Zbl
[Po] A. M. Powell Time-frequency mean and variance sequences of orthonormal bases. J. Fourier Anal. Appl. 11 (2005), 375–387. | MR | Zbl
[Pr] J. F. Price Inequalities and local uncertainty principles. J. Math. Phys. 24 (1983), 1711-1714. | MR | Zbl
[PS] J. F. Price & A. Sitaram Local uncertainty inequalities for locally compact groups. Trans. Amer. Math. Soc. 308 (1988), 105-114. | MR | Zbl
[Sh1] H. S. Shapiro Uncertainty principles for basis in , unpublished manuscript (1991).
[Sh2] H. S. Shapiro Uncertainty principles for basis in , Proceedings of the conference on Harmonic Analysis and Number Theory, CIRM, Marseille-Luminy, october 16-21, 2005, L. Habsieger, A. Plagne & B. Saffari (Eds). In preparation
[SP] D. Slepian & H. O. Pollak Prolate spheroidal wave functions, Fourier analysis and uncertainty. I. Bell System Tech. J. 40 (1961), 43–63. | MR | Zbl
[S1] D. Slepian Prolate spheroidal wave functions, Fourier analysis and uncertainity. IV. Extensions to many dimensions; generalized prolate spheroidal functions. Bell System Tech. J. 43 (1964), 3009–3057. | MR | Zbl
[S2] D. Slepian Some comments on Fourier analysis, uncertainty and modeling. SIAM Rev. 25 (1983), 379–393. | MR | Zbl