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FRACTAL WEYL LAWS FOR QUANTUM RESONANCES

MACIEJ ZWORSKI

1. Introduction

We present results of recent work with Johannes Sjöstrand [18] on upper bounds of the
number of semiclassical resonances for systems with chaotic classical dynamics. These
upper bounds are interpreted as “fractal Weyl laws for resonances” since the exponent is
now related to the dimension of the trapped set of the classical system. Despite some
numerical evidence, for models based on partial differential equations there are no rigorous
results showing that these bounds are optimal. However, recent joint work with Stéphane
Nonnenmacher [14] shows that the bounds are optimal for some discrete models of chaotic
scattering based on open quantum maps.

Here, some of the ideas of [18] are explained in detail by proving a simpler result about
the number of (complex) eigenvalues of a chaotic potential with a complex absorbing bar-
rier. That corresponds to a model popular in computational chemistry – see the work of
Stefanov [19] for a recent mathematical treatment and references. The energy interval we
consider has a fixed length, rather than the length Ch, which leads to further, more serious,
simplifications.

Thus let V ∈ C∞
c (Rn; R) be supported in B(0, R0). The complex absorbing barrier is

given by W ∈ C∞(Rn), satisfying W ≥ 0, W = 0 in B(0, R0), and W > 1 outside B(0, R1),
R1 > R0. We consider

(1.1) P
def
= −h2∆ + V (x) − iW (x) ,

The absorbing barrier created by W is a model of infinity since it produces no reflection in
semiclassical propagation. When we say that the flow of Hp, p = |ξ|2 + V (x), is hyperbolic
near energy E we mean it in the standard sense of (1.7), or the weaker sense given in §3.1.

Theorem. Suppose that P (h) is given by (1.1) with supp V ⊂ B(0, R0), and assume that

the classical flow near energy E is hyperbolic, and that the union of trapped sets (1.6) with

energies |Ẽ −E| < 2δ has upper Minkowski dimension m.

Then for any m̃ > m, and C0 > 0 there exists C1 such that

(1.2) | Spec(P (h)) ∩ [E − δ, E + δ − i[0, C0h]| ≤ C1h
−em/2 .

When the trapped is set is of pure dimension, m̃ can be replaced by m.
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To motivate this theorem and the results of [18] reviewed below we first recall well
known results about discrete spectra of selfadjoint semiclassical operators. Thus, let P =
−h2∆g +V (x) be a self-adjoint Schrödinger operator on a compact Riemannian n-manifold,
(X, g), V ∈ C∞(X; R). The spectral asymptotics as h→ 0 are given by the celebrated Weyl

law – see [4] and [7] for recent advances and numerous references. If we assume that the
zero energy surface is nondegenerate,

p
def
= |ξ|2g + V (x) = E =⇒ dp 6= 0 ,

then

(1.3) |Spec(P) ∩ [E − Ch,E + Ch)| = O(h−n+1) .

Let Hp be the Hamilton vector field of p on T ∗X, locally given by

Hp =

n∑

j=1

∂p

∂ξj
∂xj

− ∂p

∂xj
∂ξj

, (x, ξ) ∈ T ∗
R

n .

When the flow, exp tHp : p−1(E) → p−1(E), has the property that the set of its closed
orbits has Liouville measure zero on p = E, then we have the infinitesimal version of the
Weyl law:

(1.4) |Spec(P) ∩ [E − Ch,E + Ch]| =
2Ch

(2πh)n

∫

p(x,ξ)=E

dL(x, ξ) + o(h−n+1) ,

where dL is the Liouville measure on p = E, that is dLdp = dxdξ. This result is the
mathematical starting point of many recent investigations, mostly in physical literature,
of the finer structure of the spectrum and its relation to classical dynamics – see [1] and
references given there.

When the manifold is non-compact the situation is dramatically different. The simplest
case is that of a manifold which is Euclidean outside of a compact set and V ∈ C∞

c (X; R).
The discrete eigenvalues of P are replaced by quantum resonances which are defined as the
poles of the meromorphic continuation of

(P − z)−1 : C∞
c (X) −→ C∞(X) , Im z > 0 ,

and we denote the set of resonances by Res(P (h)).

In [18] we provide upper bounds for the number of resonances for a much larger class
of operators P in D(0, Ch). The main result [18, Theorem 3] states that for classical
Hamiltonians p with hyperbolic flow on p = 0 (see (1.7) and §3.1 below):

(1.5) |ResP (h) ∩D(0, Ch)| = O(h−ν) ,

where 2ν + 1 is essentially the dimension of the trapped (non-wandering) set in p−1(0),

(1.6) KE
def
= {(x, ξ) ∈ T ∗X : p(x, ξ) = E , exp(tHp)(x, ξ) 6→ ∞ , t→ ±∞} .
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In the case of a compact manifold ν = n− 1 so that (1.5) reduces to (1.3). By dimension
we always mean the upper Minkowski dimension

m0 = 2n− 1 − sup{d : lim sup
ε→0

ε−d vol({ρ ∈ p−1(0) : d(ρ,K) < ε}) <∞} .

A simple example is provided by a three bump potential shown in Fig.1.

Figure 1. A three bump potential exhibiting hyperbolic dynamics at an
interval of energies.

The basic hyperbolicity assumption at an energy E can be stated as follows: for ρ ∈
p−1(E) lying in a neighbourhoood of the trapped set KE we have,

Tρ(p
−1(E)) = RHp(ρ) ⊕E+(ρ) ⊕E−(ρ) , dimE±(ρ) = n− 1 ,

p−1(E) 3 ρ 7−→ E±(ρ) ⊂ Tρ(p
−1(E)) is continuous,

d(exp tHp)ρ(E±(ρ)) = E±(exp tHp(ρ)) ,

∃ λ > 0 ‖d(exp tHp)ρ(X)‖ ≤ Ce±λt‖X‖ , for all X ∈ E±(ρ), ∓t ≥ 0.

(1.7)

An example of a potential satisfying this assumption at a range of non-zero energies is
given in Fig.1 – see [13] and [16, Appendix c]. Following [16] we will formulate a weaker
dynamical hypothesis in §3.

The first estimate involving the dimension of K was proved by the first author in [16,
Theorems 4.6, 5.5, and 5.7]: there exists constants C0, C1 > 0, such that for δ0 > 0 fixed
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and small enough

|Res(P (h)) ∩ {z : |z| < δ , Im z > −µ}| ≤ C1δ

(
h

µ

)−n

µ− 1
2

em ,

C0h ≤ µ ≤ 1/C0 , C0h
1
2 ≤ δ ≤ δ0 , 0 < h < 1/C0 ,

(1.8)

where now m̃ is any number greater than the dimension of the union of trapped set with
energies |Ẽ−E| < 2δ0. In homogeneous situations, such as for instance obstacle scattering,
m̃ = m+ 1. When µ = C0h, the improvement in (1.5) lies in allowing δ ' h, which is the
natural limit for this type of spectral estimates.

Earlier, non-geometric, bounds on the number of resonances (scattering poles) were ob-
tained by Melrose [11],[12] and the second author [21],[22]. In the case of convex co-compact
Schottky quotients (and any convex co-compact quotients in dimension two) the analogue
of (1.5) was proved in [6] using zeta function techniques, improving earlier estimates of [23]
the proof of which was largely based on [16]. These technique gave similar results for the
zeros of zeta functions of rational maps [3],[20], in which case the dimension of the trapped
set becomes essentially the dimension of the Julia set.

Numerical investigations in different settings of semiclassical three bump potentials
[8],[9], Schottky quotients [6], three disc scattering [10], and Cantor-like Julia sets for
z 7→ z2 + c, c < −2 [20], suggest that for µ ' Ch and δ ' 1 the estimate (1.8) is optimal.
A different model was recently considered in [14]: quantum resonances were defined using
an open quantum map with a classical “trapped set” corresponding to K intersected with
a hypersurface transversal to the flow. The numerical results and a simple linear algebraic
toy model suggest that the fine estimate (1.5) is optimal. A similar model was also used
in [15] where the fractal Weyl law gave corrections to the applications of random matrix
theory to open quantum systems.

We should stress that the simplification provided in the Theorem above avoids one of
the more delicate aspects of [18]: second microlocalization with respect to a hypersurface
in the C∞ case. We refer to [18, §2] for an outline of the proof of (1.5).

Acknowledgements. I should like to thank the National Science Foundation for partial
support under the grant DMS-0200732, and École Polytechnique for its generous hospitality
in Fall 2004. The original paper [18] was used extensively in the preparation of this note.

2. Preliminaries

In this section we present various results of semiclassical microlocal analysis needed in
the proof of the theorem in §1. We provide proofs of all the results which cannot be in the
standard reference [4].
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2.1. Review of semiclassical pseudodifferential calculus. We recall the definition of
semiclassical symbols on R

n:

Sm,k(T ∗
R

n) = {a ∈ C∞(T ∗
R

n × (0, 1]) : |∂α
x∂

β
ξ a(x, ξ; h)| ≤ Cα,βh

−m〈ξ〉k−|β|} .
The corresponding class of pseudodifferential operators is denoted by Ψm,k

h (Rn), and we
have the usual Weyl quantization formula:

Opw
h (a)u(x) =

1

(2πh)n

∫ ∫
a

(
x+ y

2
, ξ

)
ei〈x−y,ξ〉/hu(y)dydξ ,

and we refer to [4] for a detailed discussion. We remark only that when we consider the
operators acting on half-densities we can define the surjective symbol map,

σh : Ψm,k(Rn) −→ Sm,k(T ∗
R

n)/Sm−2,k−2(T ∗
R

n) ,

see [17, Appendix]. We keep this in mind but for notational simplicity we supress the
half-density notation.

For a ∈ Sm,k(T ∗
R

n) we define

ess-supph a ⊂ T ∗
R

n t S∗
R

n , S∗
R

n def
= (T ∗

R
n \ 0)/R+ ,

where the usual R+ action is given by multiplication on the fibers: (x, ξ) 7→ (x, tξ), as

ess-supph a = {{(x, ξ) ∈ T ∗
R

n : ∃ ε > 0 ∂α
x ∂

β
ξ a(x

′, ξ′) = O(h∞) , d(x, x′) + |ξ − ξ′| < ε}
t {{(x, ξ) ∈ T ∗

R
n \ 0 : ∃ ε > 0 ∂α

x∂
β
ξ a(x

′, ξ′) = O(h∞〈ξ′〉−∞) ,

d(x, x′) + 1/|ξ′| + |ξ/|ξ| − ξ′/|ξ′|| < ε}/R+ ,

where the second complement is in S∗
R

n. For A ∈ Ψm,k
h (Rn), then define

WFh(A) = ess-supph a , A = Opw
h (a) ,

noting that, as usual, the definition does not depend on the choice of Opw
h . For

u ∈ C∞((0, 1]h; C∞(Rn)) , ∀ K b R
n , N ∈ N ∃ P , h0 , ‖u‖CN (K) ≤ h−P , h < h0 ,

we define

WFh(u) =
(⋃{

WFh(A) : A ∈ Ψ0,0(Rn) : Au ∈ h∞C∞((0, 1]h; C∞(Rn))
}){

,

where the complement is taken in T ∗
R

n t S∗
R

n. Here we will be concerned with a purely
semiclassical theory and deal only with compact subsets of T ∗

R
n.

To illustrate the h-pseudodifferential calculus at work we prove two simple lemmas which
will be used later. We say that A ∈ Ψm,k(Rn) is elliptic onK b T ∗

R
n if |σ(A)�K | > h−m/C.

Lemma 2.1. Suppose Q ∈ Ψ0,m(Rn) is elliptic at (x0, ξ0), ‖u‖L2 = 1, and WFh(u) is

contained in a sufficiently small neighbourhood of (x0, ξ0). Then for h small enough,

‖Qu‖L2 ≥ 1/C .
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Lemma 2.2. Suppose that ψj ∈ C∞
b (T ∗

R
n), ψ2

1 + ψ2
2 = 1, suppψ1 ⊂ {(x, ξ) : |ξ| ≤ C}.

Then, there exist Ψ1 ∈ Ψ0,−∞(Rn) and Ψ2 ∈ Ψ0,0(Rn), with principal symbols ψ1 and ψ2

respectively, such that

Ψ2
1 + Ψ2

1 = I +R , R ∈ Ψ−∞,−∞(Rn) , Ψ∗
j = Ψj .

Proof. Functional calculus gives

(ψw
1 )2 + (ψw

2 )2 = I + rw
1 , r1 ∈ S−1,−∞(T ∗

R
n) ,

in particular r = O(h) : H−M(Rn) → HM(Rn). If h is small enough we put

Ψ1
j = (1 + rw

1 )−
1
4ψw

j (1 + rw
1 )−

1
4 ,

so that

(Ψ1
1)

2 + (Ψ1
2)

2 = I + rw
2 , r2 ∈ S−2,−∞(T ∗

R
n) , (Ψ1

j)
∗ = Ψ1

j .

and we can then proceed by iteration. �

The semiclassical Sobolev spaces, Hs
h(R

n) are defined by

‖u‖2
Hs

h
=

∫

Rn

〈hξ〉2s|Fu(ξ)|2dξ , Fu(ξ) def
=

∫

Rn

u(x)e−i〈x,ξ〉dx .

The following lemma will also be useful:

Lemma 2.3. Suppose that Pt, is a family of operators such that

Pt : Hs
h(R

n) −→ Hs−m
h (Rn) ,

∀ A ∈ Ψ0,−∞(Rn) , adPt
A = O(h) : L2(Rn) −→ L2(Rn) , 0 < h < h0(t).

Let Ψj be as in Lemma 2.2 and suppose that

‖PtΨju‖ ≥ th‖Ψju‖ − O(h/t)‖u‖ , j = 1, 2 , u ∈ C∞
c (Rn) .

Here the constants in O are independent of h and t. Then for t > t0 � 1 and 0 < h < h0(t),

‖Ptu‖ ≥ th‖u‖/2 .

Proof. We recall from Lemma 2.2 that

(2.1) ‖Ψ1v‖2 + ‖Ψ2v‖2 = ‖v‖2 + 〈Rv, v〉 = ‖v‖2 + O(h∞)‖v‖H−N
h

,

and hence with v = Ptu,
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‖Ptu‖2 = ‖Ψ1Ptu‖2 + ‖Ψ2Ptu‖2 −O(h∞)‖u‖2

≥ ‖PtΨ1u‖2 + ‖PtΨ2u‖2 − ‖[Ψ2, Pt]u‖2 − ‖[Ψ2, Pt]u‖2

− 2
(
‖Ψ1Ptu‖‖[Ψ1, Pt]u‖2 + ‖Ψ2Ptu‖‖[Ψ2, Pt]u‖2

) 1
2 −O(h∞)‖u‖2

≥ ‖PtΨ1u‖2 + ‖PtΨ2u‖2

− 2C(‖[Ψ1, Pt]u‖2 + ‖[Ψ2, Pt]u‖2) − ‖Ptu‖2/C −O(h∞)‖u‖2

≥ ‖PtΨ1u‖2 + ‖PtΨ2u‖2 − C ′h2‖u‖2 − ‖Ptu‖2/C .

We now use the hypothesis of the lemma and (2.1) with v = u to obtain

‖Ptu‖2 ≥ t2h2(‖Ψ1u‖2 + ‖Ψ2u‖2) − C ′h2‖u‖2 − ‖Ptu‖2/C

≥ t2h2‖u‖2 − C ′h2‖u‖2 − ‖Ptu‖2/C

and the lemma follows. �

2.2. S 1
2

spaces with two parameters. We define the following symbol class:

(2.2) a ∈ Sm, em,k
1
2

(T ∗
R

n) ⇐⇒ |∂α
x∂

β
ξ a(x, ξ)| ≤ Cαβh

−mh̃− em

(
h̃

h

) 1
2
(|α|+|β|)

〈ξ〉k−|β| ,

where in the notation we supress the dependence of a on h and h̃. We define the Weyl
quantization of a in the usual way

aw(x, hDx)u =
1

(2πh)n

∫
a

(
x+ y

2
, ξ

)
e

i
h
〈x−y,ξ〉u(y)dydξ ,

and the standard results (see [4]) show that if a ∈ Sm, em,k
1
2

(T ∗
R

n) and b ∈ Sm′, em′,k′

1
2

(T ∗
R

n)

then
a(x, hDx) ◦ b(x, hDx) = c(x, hDx) with c ∈ Sm+m′, em+ em′,k+k′

1
2

(T ∗
R

n) .

The presence of the additional parameter h̃ allows us to conclude that

c ≡
∑

|α|<M

1

α!
∂α

ξ aD
α
xb mod Sm+m′, em+ em′−M,k+k′−M

1
2

(T ∗
R

n) ,

that is, we have a symbolic expansion in powers of h̃. We could also consider an expansion
in the Weyl quantization – see (2.4).

We denote our class of operators by Ψm, em,k
1
2

(T ∗
R

n). For simplicity we will only state the

characterization à la Beals for a simpler class of symbols:

Lemma 2.4. Suppose that A : S(Rn) → S ′(Rn). Then A = Opw
h (a) with

(2.3) ∂α
x∂

β
ξ a = O(h−mh̃−em)

(
h̃

h

) 1
2
(|α|+|β|)

,
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if and only if for any sequence {`j}N
j=1 of linear functions on T ∗

R
n we have

‖ adOpw
h (`1) ◦ · · ·adOpw

h (`N )Au‖L2(Rn) ≤ Ch−m+N/2h̃− em+N/2‖u‖L2(Rn) ,

for any u ∈ S(Rn).

Proof. We can assume that m = m̃ = 0. The statement follows from the proof in [4,
Chapter 8] and a rescaling:

(x̃, ξ̃) = (h̃/h)
1
2 (x, ξ) .

In fact, we define the following unitary operator on L2(Rn):

Uh,h̃u(x̃) = (h̃/h)
n
4 u((h/h̃)

1
2 x̃) ,

for which we can check that

a(x, hDx) = U−1

h,h̃
ah,h̃(x̃, h̃Dx̃)Uh,h̃ , ah,h̃(x̃, ξ̃) = a((h/h̃)

1
2 (x̃, ξ̃)) .

Clearly a satisfies (2.3) if and only if ah,h̃ ∈ C∞
b (T ∗

R
n). The Beals condition for h̃-

pseudodifferential operators is

‖ ad˜̀
1(x̃,h̃Dx̃) ◦ · · · ◦ ad˜̀

N (x̃,h̃Dx̃) ah,h̃(x̃, h̃Dx̃)u‖L2 ≤ Ch̃N‖u‖L2 .

But this is the condition in the lemma since we should take

˜̀
j = (`j)h,h̃ = (h̃/h)

1
2 `j ,

and this completes the proof. �

We will also need the following application of the semi-classical calculus:

Lemma 2.5. Suppose that ∂αa, ∂αb = Oα((h̃/h)|α|/2) , and that cw(x, hD) = aw(x, hD) ◦
bw(x, hD). Then

(2.4) c(x, ξ) =
N∑

k=0

1

k!

(
ih

2
σ(Dx, Dξ;Dy, Dη)

)k

a(x, ξ)b(y, η)�x=y,ξ=η +eN(x, ξ) ,

where for some M

|∂αeN | ≤ CNh
N+1×

∑

α1+α2=α

sup
(x,ξ)∈T∗Rn

(y,η)∈T∗Rn

sup
|β|≤M ,β∈N2n

∣∣∣(h
1
2∂(x,ξ;y,η))

β(iσ(D)/2)N+1∂α1a(x, ξ)∂α2b(y, η)
∣∣∣ ,(2.5)

where σ(D) = σ(Dx, Dξ;Dy, Dη) .

Proof. This follows from from the standard estimates of symbolic calculus (see [4, Propo-
sition 7.6]): suppose that A(D) is a non-degenerate real quadratic form. Then there exists
M such that

|∂α exp(iA(D))a(x, ξ)| ≤ C
∑

|β|≤M

sup
(x,ξ)∈T ∗Rn

|∂α+βa(x, ξ)| .
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We observe that a rescaling x̃ = x/
√
s, s > 0, shows that

|∂α exp(isA(D))a(x, ξ)| ≤ C
∑

|β|≤M

sup
(x,ξ)∈T ∗Rn

|∂α(
√
s∂)βa(x, ξ)| .

To obtain an expansion we use the Taylor expansion:

exp(ihA(D)) =
N∑

k=0

(ihA(D))k

k!
+

1

N !

∫ 1

0

(1 − t)N exp(ithA(D))(ihA(D))N+1dt .

In the notation of the lemma and with A(D) = σ(Dx, Dξ;Dy, Dη)/2,

c(x, ξ) = exp(iA(D))a(x, ξ)b(y, η)�x=y,η=ξ ,

and the lemma follows. �

As a particular consequence we notice that if a ∈ S0,0,−∞
1
2

(T ∗
R

n) and b ∈ S0,−∞(T ∗
R

n)

then

aw(x, hD) ◦ bw(x, hD) = cw(x, hD) , c(x, ξ) =

N∑

k=0

1

k!
(ihσ(Dx, Dξ;Dy, Dη))

k a(x, ξ)b(y, η)�x=y,ξ=η +O(h
N+1

2 h̃
N+1

2 ) ,

and the usual pseudodifferential calculus allows a remainder improvement to

O(h
N+1

2 h̃
N+1

2 〈ξ〉−∞) .

The following proposition will provide estimates on the number of eigenvalues:

Proposition 2.6. Suppose that a ∈ S0,0,−∞
1
2

(T ∗
R

n) and

supp a ⊂Wh,h̃ ,

where Wh,h̃ satisfies

Wh,h̃ ⊂
K(h)⋃

k=1

Bk , diam Bk ≤ C1(h/h̃)
1
2 .

Then for 0 < h < h0, there exists a finite rank operator R(h) such that for

Oph(a) −R(h) ∈ Ψ0,−∞,
1
2

(Rn) , rank R(h) = C2h̃
−nK(h) .

Proof. We take a partition of unity on Wh,h̃,

K ′(h)∑

k=1

χk = 1 on Wh,h̃, suppχk ⊂ Uk , χk ∈ S0,0,−∞,−∞
Σ, 1

2

(T ∗
R

n) .
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If ψ = 1 −∑k χk ∈ S0,0,−∞,
1
2

then the condition on the support of a shows that, for all

α, β ∈ N
n, ∂αa ∂βψ ≡ 0. Consequently, Oph(ψ)A ∈ Ψ0,−∞,−∞

1
2

(Rn) . Hence it suffices to

show that for each k there exists an operator Rk such that

Oph(χk)A−Rk ∈ Ψ0,−∞,−∞
1
2

(Rn) , rank(Rk) ≤ Ch̃−n ,

with C independent of k. By taking a finer cover of Wh,h̃ (with a number of elements
K ′′(h) ≤ C ′′K(h)) we can assume that Oph(χk)A = Oph(ak), where

supp ak ⊂ {(x, ξ) : |x− xk| + |ξ − ξk| ≤ C(h/h̃)
1
2} .

We then consider the following operators

Qk = Oph(qk) , qk = |x− xk|2 + |ξ − ξk|2 .

If χ ∈ C∞
c (R), χ(t) = 1 for t ≤ C̃, χ(t) = 0 for t > 2̃C, then

χ(h̃Qk/h)Ak −Ak ∈ Ψ0,−∞,−∞
1
2

.

The standard analysis of the spectrum of harmonic oscillators shows that χ(h̃Qk/h) is

a finite rank operator and its rank is bounded by C ′h̃−n. Hence we can take Rk =
χ(h̃Qk/h)Ak. �

2.3. One parameter groups of elliptic operators. We recall a special case of a result
of Bony and Chemin [2, Théoreme 6.4]. Let m(x, ξ) be an order function in the sense of
[4]:

(2.6) m(x, ξ) ≤ Cm(y, η)〈(x− y, ξ − η)〉N .
The class of symbols, S(m), corresponding to m is defined as

a ∈ S(m) ⇐⇒ |∂α
x ∂

β
ξ a(x, ξ)| ≤ Cαβm(x, ξ) .

If m1 and m2 are order functions in the sense of (2.6), and aj ∈ S(mj) then (we put h = 1
here),

aw
1 (x,D)aw

2 (x,D) = bw(x,D) , b ∈ S(m1m2) ,

with b given by the usual formula,

b(x, ξ) = a1 # a2(x, ξ)

def
= exp(iσ(Dx1 , Dξ1;Dx2, Dξ2)/2)a1(x

1, ξ1)a2(x
2, ξ2)�x1=x2=x,ξ1=ξ2=ξ .

(2.7)

A special case of [2, Théoreme 6.4] gives

Proposition 2.7. Let m be an order function in the sense of (2.6) and suppose that

G ∈ C∞
c (T ∗

R
n; R) satisfies

(2.8) G(x, ξ) − logm(x, ξ) = O(1) , ∂α
x ∂

β
ξ G(x, ξ) = O(1) , |α| + |β| ≥ 1 .
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Then

(2.9) exp(tGw(x,D)) = Bw
t (x,D) , Bt ∈ S(mt) .

Here exp(tGw(x,D)) is constructed using spectral theory of bounded self-adjoint operators.

The estimates on Bt ∈ S(mt) depend only on the constants in (2.8) and in (2.6). In

particular they are independent of the support of G.

Proof. �

The hypotheses on G in (2.8) are equivalent to the statement that exp(tG) ∈ S(mt), for
all t ∈ R. We start with

Lemma 2.8. Let U(t)
def
= (exp tG)w(x,D) : S(Rn) −→ S(Rn). For |t| < ε0(G), the

operator U(t) is invertible, and

U(t)−1 = Bw
t (x,D) , Bt ∈ S(m−t) .

Proof. We apply the composition formula (2.7) to obtain

U(−t)U(t) = Id+ Ew
t (x,D) , Et ∈ S(1) .

More explicitely we write (see [4, Proposition 7.7] and Lemma 2.5 here)

Et(x1, ξ) =

∫ s

0

esA(D)A(D)(e−tG(x1,ξ1)+tG(x2,ξ2))�x2=x1=x,ξ2=ξ1=ξ ds

=

∫ s

0

(it/2)esA(D)(Dξ1GDx2G−Dx1GDξ2G)e−tG(x1,ξ1)+tG(x2,ξ2)�x2=x1=x,ξ2=ξ1=ξ ds ,

where A(D) = iσ(Dx1, Dξ1 ;Dx2, Dξ2)/2.

Hence Et = tẼt where Ẽt ∈ S(1) uniformly, and thus

Ew
t (x,D) = O(t) : L2(Rn) → L2(Rn) .

This shows that for |t| small enough Id + Ew
t (x,D) is invertible, and Beals’s lemma (see

for instance [4, Proposition 8.3]) gives

(Id+ Ew
t (x,D))−1 = Cw

t (x,D) , Ct ∈ S(1) .

Hence Bt = Ct# exp(−tG(x, ξ)) ∈ S(m−t). �

We now observe that
d

dt
(U(−t) exp(tGw(x,D))) = V (t) exp(tGw(x,D)) ,

V (t) = Aw
t (x,D) , At ∈ S(m−t) .

(2.10)

In fact, we see that

d

dt
U(−t) = −(G exp(−tG))w(x,D) , U(−t)Gw(x,D) = (exp(tG)#G)w(x,D) .
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As before, the composition formula (2.7) gives

exp(−tG)#G−G exp(−tG) =
∫ 1

0

exp(sA(D))A(D) exp(−tG(x1, ξ1)G(x2, ξ2)�x1=x2=x,ξ1=ξ2=ξ ,

A(D) = iσ(Dx1 , Dξ1;Dx2, Dξ2)/2 .

The hypothesis on G shows that A(D) exp(tG(x1, ξ1))G(x2, ξ2) is a sum of terms of the
form a(x1, ξ1)b(x2, ξ2) where a ∈ S(m−t) and b ∈ S(1). The continuity of exp(A(D)) on
the spaces of symbols (see [4, Proposition 7.6]) gives (2.10).

If we put

C(t)
def
= −V (t)U(−t)−1 ,

then by Lemma 2.8, C(t) = cwt where ct ∈ S(1). Symbolic calculus shows that ct depends
smoothly on t and

(∂t + C(t))(U(−t) exp(tGw(x,D))) = 0 .

The proof of Proposition 2.7 is now reduced to showing

Lemma 2.9. Suppose that C(t) = cwt (x,D), where ct ∈ S(1), depends continuously on

t ∈ (−ε0, ε0). Then the solution of

(2.11) (∂t + C(t))Q(t) = 0 , Q(0) = qw(x,D) , q ∈ S(1) ,

is given by Q(t) = qt(x,D), where qt ∈ S(1) depends continuously on t ∈ (−ε0, ε0).

Proof. The Picard existence theorem for ODEs shows that Q(t) is bounded on L2. If `j(x, ξ)
are linear functions on T ∗

R
n then

d

dt
ad`1(x,D) ◦ · · · ◦ ad`N (x,D)Q(t) + ad`1(x,D) ◦ · · · ◦ ad`N (x,D)(C(t)Q(t)) = 0 ,

ad`1(x,D) ◦ · · · ◦ ad`N (x,D)Q(0) : L2(Rn) −→ L2(Rn) .

If we show that for any choice of `′js and any N

(2.12) ad`1(x,D) ◦ · · · ◦ ad`N (x,D)Q(t) : L2(Rn) −→ L2(Rn) ,

then Beals’s lemma (see [4, Chapter 8]) concludes the proof. We proceed by induction on
N :

ad`1(x,D) ◦ · · · ◦ ad`N (x,D)(C(t)Q(t)) = C(t) ad`1(x,D) ◦ · · · ◦ ad`N (x,D)Q(t) +R(t) ,

where R(t) is the sum of terms of the form

Ak(t) ad`1(x,D) ◦ ad`k(x,D)Q(t) , k < N , Ak(t) = ak(t)
w ,

where ak(t) ∈ S(1) depend continuously on t (this statement can also be proved by induc-
tion using the derivation property of ad`: ad`(CD) = (ad` C)D+C(ad`D)). Hence by the
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induction hypothesis R(t) is bounded on L2, and depends continuously on t. Thus
(
d

dt
+ C(t)

)
ad`1(x,D) ◦ · · · ◦ ad`N (x,D)Q(t) = R(t) : L2(Rn) −→ L2(Rn) .

Since (2.12) is valid at t = 0 we obtain it for all t ∈ (−ε0, ε0). �

This proof comes from [18, Appendix]. We should stress that the main difficulties in [2]
came from considering general Weyl calculi of pseudodifferential opearators. Here we need
only the case of the simplest metric g = dx2 + dξ2.

3. The escape function for hyperbolic flows and its h dependent

regularizations

In this section we modify [16, Sect.5] and construct a regularized escape function de-

pending on a small parameter, essentially h/h̃. We assume that p ∈ C∞(T ∗
R

n; R) satisfies

p = 0 =⇒ dp 6= 0

|x| ≥ R , |p(x, ξ)| < 2δ =⇒ exp tHp(x, ξ) → ∞ for either t→ ∞ or t→ −∞.
(3.1)

In our case p = ξ2 + V (x) − E. We also recall the result of [5, Appendix]:

Proposition 3.1. Suppose that (3.1) holds and that K̂ is the trapped set,

(3.2) K̂
def
= {ρ ∈ T ∗

R
n : exp(tHp)(ρ) 6→ ∞ , t→ ±∞ , |p(ρ)| ≤ δ} b T ∗

R
n .

Then for any two neighbourhoods, U, V , of K̂, U ⊂ V there exists G0 ∈ C∞(T ∗
R

n) such

that

suppG0 ⊂ T ∗
R

n \ U , HpG0 ≥ 0 , HpG�p−1([2δ,2δ])≤ C ,

HpG0�p−1([−δ,δ])\V ≥ 1 .
(3.3)

3.1. Dynamical assumptions. We start with the hyperbolicity assumptions [16, §5]

weaker than the more standard assumptions in §1. Let K̂ be the compact trapped set near
zero energy given by (3.2). The trapped set at zero energy is given by K = K̂ ∩ p−1(0).

We also have K̂ = Γ̂+ ∩ Γ̂−, where

(3.4) Γ̂±
def
= {(x, ξ) ∈ T ∗

R
n : |p(x, ξ)| ≤ δ , exp(tHp)(x, ξ) 6→ ∞ , t→ ∓∞} ,

and the sets K̂, Γ̂± are clearly invariant under the flow,

(3.5) exp(tHp)(K̂) ⊂ K̂ , exp(tHp)(Γ̂±) ⊂ Γ̂± .

We can now state the dynamical hypothesis.
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• In a neighbourhood, Ωρ0 of any ρ0 ∈ K,

Γ̂± =
⋃

ρ∈Ωρ0∩bΓ±

Γ̂±,ρ , ρ ∈ Γ̂±,ρ ,

Γ̂±,ρ ∩ Γ̂±,ρ′ = ∅ , or Γ̂±,ρ = Γ̂±,ρ′ .

• Each Γ̂±,ρ is a closed C1 manifold of dimension n + d, with d ≥ 0 fixed, and the
dependence

Ωρ0 ∩ Γ̂± 3 ρ 7−→ TρΓ̂±,ρ

is continuous.
• If E±

ρ
def
= TρΓ̂±,ρ, then E+

ρ + E−
ρ = Tρp

−1(p(ρ)) ⊂ Tρ(T
∗
R

n), RHp(ρ) ∈ E±
ρ , and

(3.6) ‖d(exp tHp)ρ(X)‖ ≤ Ce±λt‖X‖ , ρ ∈ K , for all X ∈ Tρ(T
∗
R

n)/E∓
ρ , ∓t ≥ 0.

The above definition makes sense since by (3.5) d(exp tHp)ρ(E
±
ρ ) = Eexp tHp(ρ), ρ ∈ Γ̂±, we

have

d(exp tHp)ρ Tρ(T
∗
R

n)/E∓
ρ −→ Texp tHp(ρ)(T

∗
R

n)/E∓
exp tHp(ρ) , ρ ∈ K ,

and we choose continuously dependent norms in the last estimate in (3.6). We also note
that X ∈ Tρ(T

∗
R

n)/E∓
ρ implies that X can be identified with a vector tangent to p−1(p(ρ)).

In [16, §5] it is shown that there exist two functions, ϕ± ∈ C1,1(T ∗
R

n), ϕ± ≥ 0, Hk
pϕ± ∈

C1,1(T ∗
R

n) , k ∈ N, such that for ρ in a small neighbourhood of K,

∓Hpϕ±(ρ) ∼ ϕ±(ρ) , Hk
pϕ±(ρ) = O(ϕ±(ρ)) , k ∈ N ,

ϕ±(ρ) ∼ d(ρ, Γ̂±) , ϕ+(ρ) + ϕ−(ρ) ∼ d(ρ, K̂)2 ,

and where d(•,Γ) is the distance to a closed set Γ. The notation f ∼ g, means that there
exists a constant C > 0 such

0 ≤ g/C ≤ f ≤ Cg .

A local model for the simplest case of one trajectory is given by p = ξ1 + x2ξ2, (x, ξ) ∈
T ∗

R
2, so that

(3.7) Hp = ∂x1 + x2∂x2 − ξ2∂ξ2 , ϕ+ = ξ2
2 , ϕ− = x2

2 , K = {(t, 0; 0, 0) : t ∈ R} .

3.2. Regularization of ϕ±. We start with two general lemmas:

Lemma 3.2. Suppose Γ ⊂ R
m is a closed set. For any ε > 0 there exists ϕε ∈ C∞(Rm)

such that

ϕε ≥ ε , ϕε ∼ d(•,Γ)2 + ε , ∂αϕε = O(ϕ1−|α|/2
ε ) ,

uniformly on compact sets.
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Figure 2. Outgoing and incoming sets in the case of one orbit in a three
dimensional energy hypersurface.

Proof. We can find a sequence xj ∈ R
m such that

⋃

j

B(xj , d(xj,Γ)/8) = R
m \ Γ ,

every x ∈ Q \ Γ, Q b R
m, is in at most N0 = N0(Q) balls B(xj , d(xj ,Γ)/2).

Let χ ∈ C∞
c (Rm; [0, 1]) be supported in B(0, 1/4), and be identically one in B(0, 1/8). We

define

ϕε(x)
def
= ε+

∑

d(xj ,Γ)>
√

ε

d(xj,Γ)2χ

(
x− xj

d(xj ,Γ) +
√
ε

)

We first note that the number non-zero terms in the sum is uniformly bounded by N0. In
fact, d(xj ,Γ) +

√
ε < 2d(xj ,Γ), and hence if χ((x− xj)/(d(xj,Γ) +

√
ε)) 6= 0 then

1/4 ≥ |x− xj |/(d(xj,Γ) +
√
ε) ≥ (1/2)|x− xj |/d(xj,Γ) ,

and x ∈ B(xj , d(xj, d(xj,Γ))/2). This shows that ϕε(x) ≤ 2N0(ε+ d(x,Γ)2), and

∂αϕε(x) = O((d(x,Γ)2 + ε)1−|α|/2) ,
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uniformly on compact sets.

To see the lower bound on ϕε we first consider the case when d(x,Γ) ≤ C
√
ε.

ϕε(x) ≥ ε ≥ (ε+ d(x,Γ)2)/C ′ .

If d(x,Γ) > C
√
ε then for at least one j, χ((x − xj)/(d(xj,Γ) +

√
ε)) = 1 (since the balls

B(xj , d(xj,Γ)/8) cover the complement of Γ, and χ(t) = 1 if |t| ≤ 1/8). Thus

ϕε(x) ≥ ε+ d(xj ,Γ)2 ≥ (ε+ d(x,Γ)2)/C ,

which concludes the proof. �

For future use we also record the following

Lemma 3.3. Suppose ϕ ∈ C1,1(Rm), ϕ ≥ 0, and for a vectorfield V ∈ C∞(Rm; Rm),
V kϕ = O(ϕ), V kφ ∈ C1,1(Rm), k ∈ N. Then, uniformly on compact sets,

dV kϕ = O(ϕ
1
2 ) , k ∈ N .

Proof. For some C > 0 the C1,1 function Cϕ − V kϕ is non-negative. Hence using the
standard estimate based on Taylor’s formula,

|dϕ|2 = O(ϕ) , |d(Cϕ− V kϕ)|2 = O(Cϕ− V kϕ) = O(ϕ) .

The lemma follows. �

We now have

Proposition 3.4. Let Γ̂± be given by (3.4). For any small ε > 0 there exist functions

ϕ̂± ∈ C∞(T ∗
R

n; [0,∞)) such that in a neighbourhood of K̂,

ϕ̂±(ρ) ∼ d(ρ, Γ̂±)2 + Cε ,

∓Hpϕ̂±(ρ) + Cε ∼ ϕ̂±(ρ) ,

∂αHk
p ϕ̂±(ρ) = O(ϕ̂±(ρ)1−|α|/2) , k ∈ N ,

ϕ̂+(ρ) + ϕ̂−(ρ) ∼ d(ρ, K̂)2 + Cε .

(3.8)

Proof. We modify the arguments of [16, §5], roughly speaking, adding an O(ε) error to all
the estimates. Let ϕ± be the functions obtained using Lemma 3.2 with Γ = Γ±. We now
put

ϕ̂±(ρ)
def
=

∫

R

gT (t)ϕ±(exp tHp(ρ))dt ,

gT ∈ C∞
c ((−1, T + 1)) , supp g′T ⊂ [−1, 1] ∪ [T − 1, T + 1] ,

g′T�[−1,1]≥ 0 , g′T�[T−1,T+1]≤ 0 , g′T (0) = 1 , g′T (T ) = −1 .
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To check (3.8) we note that, by definition, ϕ±(ρ) ∼ d(ρ, Γ̂±)2 +Cε. The assumptions (3.6)
imply (see [16, Lemma 5.2]) that

∃ C , ∀ T ≥ 0 , ∃ ΩT ⊃ K , an open set, d(exp(±THp)(ρ), Γ̂±) ≤ Ce−T/Cd(ρ, Γ̂±) .

Hence, with constants depending on T ,

ϕ̂+(ρ) ∼ ϕ+(exp(THp)(ρ)) ∼ ϕ+(ρ) ∼ d(ρ,Γ+)2 + Cε ,

ϕ̂−(ρ) ∼ ϕ−(ρ) ∼ d(ρ,Γ−)2 + Cε .

This shows the first statement in (3.8).

The assumptions on gT also show that

Hpϕ̂±(ρ) ∼ ϕ±(expTHp(ρ)) − ϕ±(ρ) ∼ d(expTHp(ρ), Γ̂±)2 − d(ρ, Γ̂±)2 + O(ε) .

so that for T large enough and for ρ in a small neighbourhood of K, (again with T depe-
nendent constants)

∓Hpϕ̂±(ρ) + Cε ∼ d(ρ, Γ̂±)2 + C ′ε ∼ ϕ̂±(ρ) .

This proves the second part of (3.8). The third part is proved using Lemma 3.3 for |α| = 1
and the estimates on ϕ± in general.

To prove the last statement in (3.8) we first see that the transversality, E+
ρ0

+ E−
ρ0

=
Tρ0(T

∗
R

n), and the continuity, ρ 7→ E±
ρ , assumed in (3.6) imply that for ρ , ρ1 , ρ2 , near a

point ρ0 ∈ K,

d(ρ, Γ̂+,ρ1 ∩ Γ̂−,ρ2) ∼ d(ρ, Γ̂+,ρ1) + d(ρ, Γ̂−,ρ2) .

Hence

ϕ̂+(ρ) + ϕ̂−(ρ) + O(ε) ∼ d(ρ, Γ̂+)2 + d(ρ, Γ̂−)2 + Cε

≤ d(ρ, Γ̂+,ρ′)
2 + d(ρ, Γ̂−,ρ′)

2 + Cε

∼ d(ρ, Γ̂+,ρ′ ∩ Γ̂−,ρ′)
2 + Cε .

If we choose ρ′ ∈ K so that d(ρ, K̂) = d(ρ, ρ′) then

d(ρ, Γ̂+,ρ′ ∩ Γ̂−,ρ′)
2 ≤ d(ρ, ρ′)2 = d(ρ, K̂)2 ,

proving that

ϕ̂+(ρ) + ϕ̂−(ρ) ≤ d(ρ, K̂)2 + O(ε) .

The opposite inequality is obtained by choosing ρ± ∈ Γ̂± such that d(ρ, ρ±) = d(ρ, Γ̂±).

Then using the transversality of Γ̂+, Γ̂−

d(ρ, K̂)2 ≤ d(ρ, Γ̂+,ρ+ ∩ Γ̂−,ρ−)2 ∼ d(ρ, Γ̂+,ρ+)2 + d(ρ, Γ̂−,ρ−)2

≤ d(ρ, ρ+)2 + d(ρ, ρ−)2 = d(ρ, Γ̂+)2 + d(ρ, Γ̂−)2

≤ ϕ̂+(ρ) + ϕ̂−(ρ) + O(ε) .

�
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3.3. Regularized escape function. We now use the functions constructed in Proposition
3.4 to obtain an escape function near K. We first need the following

Lemma 3.5. Then for |α| + k ≥ 1 we have

∂α
ρH

k
p log(ϕ̂±) = O(ϕ̂

− |α|
2

± ) .

Proof. Let f(t) = log(t). Then

f (k)(ϕ̂±) = O
(

1

ϕ̂k
±

)
, k ≥ 1 ,

and for |α| + k ≥ 1, ∂α
ρH

k
p f(ϕ̂±) is a finite linear combination of terms

f (l)(ϕ̂±)
(
∂α1

ρ Hk1
p ϕ̂±

)
· · ·
(
∂α`

ρ Hk`
p ϕ̂±

)
= O(1)

∏̀

j=1

∂
αj
ρ H

kj
p ϕ̂±

ϕ̂±
,

with
|αj| + kj ≥ 1 , α1 + · · ·+ α` = α , k1 + · · ·+ k` = k .

The estimates in (3.8) show that ∂
αj
ρ H

kj
p ϕ̂±/ϕ̂± = O(ϕ̂

−|αj |/2
± ), and hence

∂α
ρH

k
p f(ϕ̂±) = O(ϕ̂

− |α|
2

± ) ,

proving the lemma. �

We are now ready for the main results of this section.

Lemma 3.6. Let ϕ̂± be given in Proposition 3.4 and

(3.9) Ĝ
def
= (log(Mε+ ϕ̂−) − log(Mε+ ϕ̂+)) .

Then in a neighbourhood of K we have

∂α
ρH

k
p Ĝ = OM(min(ϕ̂+, ϕ̂−)−

|α|
2 ) = OM (ε−

|α|
2 ) , |α| + k ≥ 1 ,

d(ρ, K̂)2 ≥ Cε =⇒ HpĜ ≥ 1/C ,
(3.10)

where, for the second estimate, M has to be chosen large enough, independently of ε, and

C is a large constant.

Proof. We observe that, with constants depending on M , ϕ̂± +Mε has the same properties

as ϕ̂±. Hence the estimates on ∂α
ρH

k
p Ĝ follow directly from the definition (3.9) and from

Lemma 3.5. To check the second part of (3.10) we compute, using Proposition 3.4,

HpĜ =

(
Hpϕ̂−

ϕ̂− +Mε
− Hpϕ̂+

ϕ̂+ +Mε

)
≥ 1

C1

(
ϕ̂− − C2ε

ϕ̂− +Mε
+
ϕ̂+ − C2ε

ϕ̂+ +Mε

)
.

From (3.8) we also have

d(ρ, K̂)2 ≥ Cε =⇒ max(ϕ̂+, ϕ̂−) ≥ (C/2 −O(1))ε > C3ε ,
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where C3 can be as large as we like depending on the choice of C. Hence, since x 7→
(x− C2)/(x+M) is increasing,

HpĜ ≥ 1

C1

(
C3 − C2

C3 +M
− C2

M

)
≥ 1

C
,

if we choose C3 � M � C2. �

We now modify Ĝ using G0 given in Proposition 3.1:

Proposition 3.7. Let us fix δ0 > 0. Then there exist χ̂, χ0 ∈ C∞
c (T ∗

R
n), C0 > 0, and a

neighbourhoood V of K, such that

G
def
= χ̂Ĝ+ C0

(
log

1

ε

)
χ0G0 ,

satisfies

∂αHk
pG =

{
O(log(1/ε)) α = 0
O(ε−|α|/2) otherwise

,

d(ρ, K̂)2 ≥ Cε , ρ ∈ V =⇒ HpG(ρ) ≥ 1/C ,

ρ ∈ p−1([−δ, δ]) \ V , |x(ρ)| ≤ 3R0 =⇒ HpG(ρ) ≥ log(1/ε) ,

HpG(ρ) ≥ −δ0 log(1/ε) , ρ ∈ T ∗
R

n .

(3.11)

In addition we have

(3.12)
expG(ρ)

expG(µ)
≤ C0

〈
ρ− µ√

ε

〉N0

,

for some constants C0 and N0.

Proof. We obtain G0 from Proposition 3.1 taking for V a neighbourhood of K̂ in which
the estimates of Lemma 3.6 hold. We have ∂αHk

pG0 = Ok,|α|(1), and consequently for any
χ0 ∈ C∞

c (T ∗
R

n),

∂αHk
p (log(1/ε)χ0G0) = Ok,|α|(log(1/ε)) =

{
O(log(1/ε)) α = 0
O(ε−|α|/2) otherwise

.

From Lemma 3.6 we obtain, again for any χ̂ ∈ C∞
c (T ∗

R
n),

∂αHk
p (χ̂Ĝ) =

{
O(log(1/ε)) α = 0
O(ε−|α|/2) otherwise

.

The loss compared to (3.10) is due to the presence of the cut-off function.

We take χ0 ∈ C∞
c (T ∗

R
n; [0, 1]) to be identically equal to 1 in

p−1([−δ, δ]) ∩ {(x, ξ) : |x| ≤ 3R0} .
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For χ̂ ∈ C∞
c (T ∗

R
n) we take a function which is supported in a neighbhourhood of K̂ where

(3.10) holds, and identically 1 in V . Hence for ρ ∈ p−1([−δ, δ]) \ V , |x(ρ)| ≤ 3R0,

HpG(ρ) = C0 log(1/ε)HpG0(ρ) +Hp(χ̂Ĝ)(ρ) ≥ C0 log(1/ε) −O(1) log(1/ε) ≥ log(1/ε) ,

if C0 is taken large enough. For ρ ∈ V , χ̂(ρ) = 1, and

HpG(ρ) = C0 log(1/ε)HpG0(ρ) +HpĜ(ρ) ≥ HpĜ(ρ) ,

and if d(ρ, K̂) ≥ Cε, HpG(ρ) ≥ 1/C. To complete the proof of (3.11) we need to define χ0

for |x| ≥ R0. Let T and R be large positive constants to be fixed later and let χ(t) satisfy

χ(t) =

{
0 |t| > T
t |t| < αT

, χ′(t) ≥ −2α ,

where α can be chosen anywhere in (0, 1/2). It can be easily obtained by regularizing the
piecewise linear function

χ#(t) =





0 |t| > T
t |t| < αT

±α(T − t)/(1 − α) αT ≤ ±t ≤ T
.

Finally, let ψ ∈ C∞
c (R; [0, 1]) be equal to 1 for |t| ≤ 1, and to 0 for |t| ≥ 2. We define

χ0(ρ)
def
=
χ(G0(ρ))

G0(ρ)
ψ

(
p(ρ)

δ

)
ψ

( |x(ρ)|
R

)
.

Then

Hp(χ0G0)(ρ) = χ′(G0(ρ))HpG0(ρ)ψ

(
p(ρ)

δ

)
ψ

( |x(ρ)|
R

)

+
1

R
χ(G0(ρ))ψ

(
p(ρ)

δ

)
ψ′
( |x(ρ)|

R

)
Hp(|x|)(ρ) ,

and

Hp(χ0G0)(ρ) ≥ −C1

(
α +

T

R

)
,

where C1 is independent of T and R: we note that (3.3) guarantees the boundedness of
HpG0, and the assumptions on p imply that Hp(|x|) is uniformly bounded for |p| ≤ 2δ. For
any α > 0 we can choose T = T (α) such that |G0(ρ)| ≤ αT for |x(ρ)| ≤ 3R0, |p(ρ)| ≤ 2δ.
We then choose α and R so that

C0C1(α+ T (α)/R) < δ0 .

Hence for |x(ρ)| ≥ R0

HpG = C0 log(1/ε)Hp(χ0G0) ≥ −δ0 log(1/ε) ,

which is the last statement in (3.11).
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It remains to show (3.12) and for simplicity of presentation we replace T ∗
R

n with R
2n.

We first prove that

(3.13)
ϕ̂±(ρ) +Mε

ϕ̂±(µ) +Mε
≤ C1

〈
ρ− µ√

ε

〉2

, M ≥ 0 ,

with constants depending on M . We can replace ϕ̂± +Mε with ϕ̂±, as ϕ̂± +Mε ∼M ϕ̂±.
Thus we claim that,

ϕ̂±(ρ)

ϕ̂±(µ)
≤ C1

〈
ρ− µ√

ε

〉2

.

Since ϕ̂± ∼ d(•,Γ±)2 + ε, ϕ̂± ≥ ε, we have

ϕ̂±(ρ) ≤ C(d(ρ,Γ±)2 + ε) ≤ C(d(µ,Γ±)2 + |µ− ρ|2 + ε)

≤ C ′(ϕ̂±(µ) + |µ− ρ|2) = C ′(ϕ̂±(µ) + ε〈(ρ− µ)/
√
ε〉2)

≤ 2C ′ϕ̂±(µ)〈(ρ− µ)/
√
ε〉2 .

In the notation of Lemma 3.6, (3.13) gives

|Ĝ(ρ) − Ĝ(µ)| ≤ C + 2 log〈(ρ− µ)/
√
ε〉 ,

and with χ̂ ∈ C∞
c ,

|χ̂(ρ)Ĝ(ρ) − χ̂(µ)Ĝ(µ)| ≤ C|ρ− µ| log(1/ε) + C log〈(ρ− µ)/
√
ε〉 .

Clearly,
|χ0(ρ)G0(ρ) − χ0(µ)G0(µ)| ≤ C|ρ− µ| log(1/ε) ,

and hence to obtain (3.12) we need

|ρ− µ| log(1/ε) ≤ C log〈(ρ− µ)/
√
ε〉 + C , ρ, µ ∈ Q b R

2n .

If we put δ =
√
ε, t = |ρ− µ|/(Cδ) this becomes

δ log
1

δ
≤ log〈t〉 + 1

t
, 0 ≤ t ≤ 1

δ
,

and that is clear as t 7→ (log〈t〉 + 1)/t is decreasing. �

4. Proof of the main result

Let G be the escape function given in Proposition 3.7, ε = h/h̃ and let Gw be its Weyl
quantization,

Gw = O(log(h̃/h)) : L2(Rn) → L2(Rn) .

We use the notation of the previous section and write

p(x, ξ) = ξ2 + V (x) ,

the real part of the symbol of P . We define a family of conjugated operators:

(4.1) Pt
def
= e−tGw

PetGw

.
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It is easy to see that, in the notation of §2.2,

(4.2) exp(tGw) ∈ Ψ
|t|C,0,0
1
2

(Rn) ,

that is exp(tGw) = Bw
t , ∂αBt = O(h−|t|C−|α|/2h̃|α|/2). Finer estimates are however possible

thanks to the results of Bony-Chemin [2]. The first of these is given in

Lemma 4.1. Suppose that Q ∈ Ψ0,0,0
1
2

(Rn). Then

(4.3) exp(−tGw)Q exp(tGw) ∈ Ψ0,0,0
1
2

(Rn) .

Proof. We follow §2.2 and change to the variables

(x̃, ξ̃) = (h̃/h)
1
2 (x, ξ) ,

G̃(x̃, ξ̃) = G(x, ξ) , Q̃t(x̃, ξ̃) = Qt(x, ξ) ,

U−1Gw(x, hD)U = G̃w(x̃, h̃Dx̃) , U−1Qw
t (x, hD)U = Q̃w

t (x̃, h̃Dx̃) ,

Uv(x̃) = (h̃/h)
n
4 v((h/h̃)

1
2 x̃) .

We also note that

R ∈ Ψ0,0,0
1
2

(Rn) ⇐⇒ U−1RU ∈ Ψ0,0(Rn) ,

where on the right, h̃ is the small parameter – see the proof of Lemma 2.4. The estimate
(3.12) shows that, in (x̃, ξ̃) coordinates, G̃ satisfies the hypothesis of Proposition 2.7 and
that proves (4.3). �

The basic properties of Pt are given in

Proposition 4.2. Let Pt be given by (4.1) and let Σ b T ∗
R

n be a compact surface coin-

ciding with p−1(0) in a neighbourhood of the support of G. Then for |t| ≤ C, Pt ∈ Ψ0,0,2
1
2

,

and more precisely

Pt = P − ithOpw
h (HpG) + Et , Et ∈ Ψ−1,−1,0

1
2

(Rn) ,(4.4)

Et = O(hh̃) : L2(Rn) → L2(Rn), uniformly in h and h̃.

Proof. Let V1, V2 be open neighbourhoods of suppG,

suppG ⊂ V1 b V 2 b T ∗
R

n .

We first observe that if Ψ ∈ Ψ0,−∞(Rn) satisfies

WFh(Ψ) ⊂ V2 , WFh(I − Ψ) ⊂ {V1 ,

then

(4.5) [exp(tGw),Ψ] ∈ Ψ−∞,−∞(Rn) , (I − Ψ)(exp(tGw) − I) ∈ Ψ−∞,−∞(Rn) , |t| ≤ 1 .
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In fact, using the calculus in §2.2 we see that [Gw,Ψ] ∈ Ψ−∞,−∞(Rn), Hence, using (4.2)

d

dt
[exp(tGw),Ψ] = Gw[exp(tGw),Ψ] + [Gw,Ψ] exp(tGw)

= Gw[exp(tGw),Ψ] + At , At ∈ Ψ−∞,−∞(Rn) .

Thus

[exp(tGw),Ψ] =

∫ t

0

exp((t− s)Gw)Asds ∈ Ψ−∞,−∞(Rn) ,

which is the first statement in (4.5). We also compute

d

dt
(I − Ψ)(exp(tGw) − I) = (I − Ψ)Gw exp(tGw) ∈ Ψ−∞,−∞(Rn) ,

and the second statement in (4.5) follows. Treating the equivalence of (I − Ψ)PetGw

and
(I − Ψ)P similarly we conclude that

Pt − e−tGw

ΨPetGw − (I − Ψ)P ∈ Ψ−∞,−∞(Rn) .

We now put

Q
def
= ΨP ∈ Ψ0,0(Rn) , Qt

def
= e−tGw

QetGw

,

and we only need to prove (4.4) with P• replaced by Q•.

We now establish the expansion in (4.4). Lemma 2.5 implies that

[Q,Gw] = (h/i)Opw
h (HpG) +R ,

where R ∈ Ψ
−3/2,−3/2,0
1
2

(Rn) ⊂ Ψ−1,−1,0
1
2

(Rn). It also shows that

[[Q,Gw], Gw] = (h/i)[Opw
h (HpG), Gw] + [R,Gw] ∈ Ψ−1,−1,0

1
2

(Rn) .

Here we used the special structure of G,

G = χ̂Ĝ+ C0 log(1/h)χ0G0 ,

where χ̂, χ0 and G0 are uniformly smooth. When derivatives fall on these terms in error
estimates (2.5) the gain in h compensates for the logarithmic growth, while for |α| > 0,

∂αĜ ∈ S
|α|/2,−|α|/2
1
2

.

This gives,

d

dt
Et = [Qt, G

w] − (h/i)Opw
h (HpG) + (h/i)Opw

h (Hp−pG) = [Qt −Q,Gw] +Rt ,

with
E0 = (h/i)Opw

h (Hp−pG) ∈ (h log(1/h))2Ψ0,0,0
1
2

(Rn) ⊂ Ψ−1,−1,0
1
2

(Rn) ,

and Rt ∈ Ψ−1,−1,0
1
2

(Rn). We also have

d

dt
[(Qt −Q), Gw] = e−tGw

[[Q,Gw], Gw]etGw ∈ Ψ−1,−1,0
1
2

(Rn) , Q0 −Q = 0 .
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Hence [Qt −Q,Gw] ∈ Ψ−1,−1,0
1
2

(Rn), and consequently Et ∈ Ψ−1,−1,0
1
2

. �

We now modify our operator to obtain global invertibility. For that we define a ∈
S0,0,−∞

1
2

(T ∗
R

n) as follows

a(x, ξ)
def
= χ

(
p(x, ξ)

δ0

)
χ(HpG(x, ξ))ψ(x, ξ) ,

χ ∈ C∞
c (R; [0, 1]) , χ(t) ≡ 1 , |t| ≤ 1 ,

(4.6)

and ψ be one in a fixed small neighbourhood of K̂ and zero outside of another sufficiently

small neighbourhood of K̂. We then put

P̃t = Pt − i(h/h̃)Oph(a) ∈ Ψ0,0,2
1
2

(Rn) .

We first treat the region away from the trapped set:

Lemma 4.3. Suppose that Ψ0 ∈ Ψ0,0(T ∗
R

n) satisfies

WFh(Ψ0) ∩ K̂ = ∅ .
Then for u ∈ C∞

c (Rn), z ∈ [E − δ, E + δ] − i[0, Ch] we have

‖(P̃t − z)Ψ0u‖L2 ≥ th‖Ψ0u‖L2(Rn)/C −O(h∞)‖u‖L2(Rn) ,

0 < h ≤ h0(h̃) , 0 < h̃ ≤ h̃0(t) .

Proof. Let us assume that ‖u‖ = 1. Microlocally near WFh(Ψ0), a ≡ 0 we can replace P̃t

by Pt, with error O(h̃∞h). For z ∈ D(0, Ch), t sufficiently large,

Pt − z = Opw
h (p− Re z) − iW − ihtOpw

h (HpG) − Im z + Ot(hh̃) ,

|Re p− Re z| < δ =⇒ −W (x) + htHpG(x, ξ) + Im z ≥ th/C .

Lemma 2.3 applied with Ψj’s such that |Re p−Re z| > δ on WFh(Ψ1) (with Ψj ’s constructed
using Lemma 2.2) completes the proof. �

Near the trapped set we obtain

Lemma 4.4. Let z ∈ D(0, Ch). For u ∈ C∞
c (Rn), ‖u‖ = 1, with WFh(u) in a fixed small

neighbourhood of K̂ we have

‖(P̃t − z)u‖L2(Rn) ≥ th‖u‖L2(Rn)/C , 0 < h ≤ h0(h̃) , 0 < h̃ ≤ h̃0(t) .(4.7)

provided that t is large enough.

Proof. In a small neighbourhood of K̂ the operator is microlocally equal to

P [
t

def
= P − ithOph(HpĜ) − i(h/h̃)Oph(a) + OL2→L2(hh̃) ,
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that is,

‖(P̃t − z)u‖L2(Rn) = ‖(P [
t − z)u‖L2(Rn) + O(h∞) , ‖u‖L2(Rn) = 1 ,

for u with WFh(u) near K̂. We also note that W = 0 there. We now consider

− Im〈(P [
t − z)u, u〉 = h〈(Bt(z)u, u〉 , Bt(z)

def
= −(P [

t − (P [
t )

∗)/(2hi) + Im z/h .

For z ∈ [E − δ, E + δ] − i[0, Ch], and (x, ξ) in a neighbourhood of K̂,

σh(Bt(z)) = tHpG(x, ξ) + (1/h̃)a+ Im z ≥ t/C .

The sharp G̊arding inequality applied in the Ψ0,0,−∞
1
2

calculus of §2.2 (see [4, Theorem 7.12])

gives, for ‖u‖ = 1, with WFh(u) near K̂,

〈(Bt(z)u, u〉 ≥ t/C −O(h̃) − C ≥ t/(2C) , t ≥ t0(h̃, C) .

Hence

− Im〈(P [
t − z)u, u〉 ≥ t/(2C) ,

and we compte the proof by writing

‖(P̃t − z)u‖L2(Rn) = ‖(P [
t − z)u‖L2(Rn) + O(h∞)

≥ ht/(2C) , WFh(u) near K̂, ‖u‖L2(Rn) = 1.

�

The two lemmas are now combined using Lemma 2.3 which gives for large t, 0 < h̃ ≤
h̃0(t), and 0 < h < h0(t, h̃), the invertibility of P̃t − z, z ∈ [E − δ, E + δ] − [0, iCh]:

(P̃t − z)−1 = O(1/h) : L2(Rn) −→ L2(Rn) .

Our main theorem will follow from showing that

(4.8) Oph(a) = R + E , rank(R) = O(h−m̃/2) , E = O(h̃∞) : L2(Rn) → L2(Rn) ,

m̃ > m, where m is the dimension of the trapped set near energy E, K̃, allowing m̃ = m
if the trapped set is of pure dimension.

That follows from Proposition 2.6 and the definition of the Minkowski dimension:

m = 2n− sup{d : lim sup
ε→0

ε−d vol({ρ : d(ρ, K̂) < ε}) <∞} ,

with the set being of pure dimension if

lim sup
ε→0

ε−d vol({ρ : d(ρ, K̂) < ε}) <∞ .

In other words, for ε small

vol({ρ : d(ρ, K̂) < ε}) ≤ Cε2n− em , m̃ > m ,
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and m̃ replaceable by m when K̂ is of pure dimension. The definition of a in (4.6) then
gives

vol(supp a) ≤ Ch̃h
(2n−m̃)/2 = Ch̃h

n−em/2 , m̃ > m ,

with equality if K̂ is of pure dimension.

The standard covering arguments (see [16, Lemma 3.3]) show that the hypothesis of
Proposition 2.6 are satisfied with

K(h) ≤ Ch̃h
−m/2 ,

which completes the proof of the Theorem in §1.
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“Equations aux dériveés Partielles”, Saint-Jean-des-Monts, 1984.
[13] T. Morita, Periodic orbits of a dynamical system in a compound central field and a perturbed billiards

system. Ergodic Theory Dynam. Systems 14(1994), 599–619.
[14] S. Nonnenmacher and M. Zworski, Distribution of resonances for open quantum maps, preprint 2005,

math-ph/0505034.
[15] H. Schomerus and J. Tworzyd lo, Quantum-to-classical crossover of quasi-bound states in open quan-

tum systems, Phys. Rev. Lett. 93(2004), 154102.
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