Construction de champs quantiques relativistes à température positive
Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2004-2005), Exposé no. 2, 18 p.
Gérard, Christian 1

1 Université Paris Sud XI, F-91405 Orsay, France
@article{SEDP_2004-2005____A2_0,
     author = {G\'erard, Christian},
     title = {Construction de champs quantiques relativistes \`a temp\'erature positive},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"},
     note = {talk:2},
     pages = {1--18},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2004-2005},
     mrnumber = {2182047},
     language = {fr},
     url = {http://www.numdam.org/item/SEDP_2004-2005____A2_0/}
}
TY  - JOUR
AU  - Gérard, Christian
TI  - Construction de champs quantiques relativistes à température positive
JO  - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
N1  - talk:2
PY  - 2004-2005
SP  - 1
EP  - 18
PB  - Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://www.numdam.org/item/SEDP_2004-2005____A2_0/
LA  - fr
ID  - SEDP_2004-2005____A2_0
ER  - 
%0 Journal Article
%A Gérard, Christian
%T Construction de champs quantiques relativistes à température positive
%J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
%Z talk:2
%D 2004-2005
%P 1-18
%I Centre de mathématiques Laurent Schwartz, École polytechnique
%U http://www.numdam.org/item/SEDP_2004-2005____A2_0/
%G fr
%F SEDP_2004-2005____A2_0
Gérard, Christian. Construction de champs quantiques relativistes à température positive. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2004-2005), Exposé no. 2, 18 p. http://www.numdam.org/item/SEDP_2004-2005____A2_0/

[BR] O. Bratteli and D.W. Robinson : Operator Algebras and Quantum Statistical Mechanics Vol. I,II, Springer-Verlag, New York-Heidelberg-Berlin(1981) | MR | Zbl

[Ar] H. Araki : Positive cone, Radon-Nikodym theorems, relative Hamiltonian and the Gibbs condition in statistical mechanics. An application of Tomita-Takesaki theory, in C * -algebras and their applications to Statistical Mechanics and Quantum Field Theory, D. Kastler Ed., North Holland (1976). | MR | Zbl

[Fr1] J. Fröhlich : Unbounded, symmetric semigroups on a separable Hilbert space are essentially selfadjoint. Adv. in Appl. Math. 1 (1980) 237–256. | MR | Zbl

[Fr2] J. Fröhlich : The reconstruction of quantum fields from Euclidean Green’s functions at arbitrary temperatures, Helv. Phys. Acta 48 (1975) 355–363.

[GeJ1] C. Gérard, C. Jäkel : Thermal quantum fields with spatially cut-off interactions in 1+1 space-time dimensions, à paraitre dans Journal of Funct. Anal. 2004. | MR | Zbl

[GeJ2] C. Gérard, C. Jäkel : Thermal Quantum Fields without Cut-offs in 1+1 Space-time Dimensions, preprint 2003. | MR | Zbl

[GV] I.M. Gelfand, N.J. Vilenkin : Generalized functions. Vol. 4 : Applications of harmonic analysis, Academic Press (1964). | MR | Zbl

[GJ1] J. Glimm, A. Jaffe : Quantum Physics, A functional integral point of view, Springer (1987). | MR | Zbl

[GJ2] J. Glimm, A. Jaffe : The λϕ 2 4 quantum field theory without cutoffs. II. The field operators and the approximate vacuum, Ann. of Math. 91 (1970) 362–401. | MR | Zbl

[HK] R. Høegh-Krohn : Relativistic quantum statistical mechanics in two-dimensional space-time, Comm. Math. Phys. 38 (1974) 195–224. | MR

[K] A. Klein : The semigroup characterization of Osterwalder-Schrader path spaces and the construction of Euclidean fields, J. Funct. Anal. 27 (1978) 277–291. | MR | Zbl

[KL1] A. Klein, L. Landau : Stochastic processes associated with KMS states, J. Funct. Anal. 42 (1981) 368–428. | MR | Zbl

[KL2] A. Klein, L. Landau : Construction of a unique selfadjoint generator for a symmetric local semigroup, | Zbl

[L] M. Le Bellac : Thermal Field Theory, Cambridge Univ Press (2000). | MR

[Si] B. Simon : The P(ϕ) 2 Euclidean (Quantum) Field Theory, Princeton University Press (1974). | MR | Zbl

[TW] M. Takesaki, M. Winnink : Local normality in quantum statistical mechanics, Comm. Math. Phys. 30 (1973) 129–152. | MR

[U] H. Umezawa : Advanced Field Theory : Micro, Macro, And Thermal Physics Springer (1993).