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PRECISED HARDY INEQUALITIES ON R¢
AND ON THE HEISENBERG GROUP H?

HAJER BAHOURI, JEAN-YVES CHEMIN, AND ISABELLE GALLAGHER

1. INTRODUCTION

The aim of this text is to present a proof of a “precised” version of the Hardy inequalities [12],
[13]. Those inequalities have a very big importance in Analysis (among other applications
we can mention blow-up methods, or the study of pseudodifferential operators with singular
coefficients). Many works have been devoted to those inequalities, and our goal is first to
provide a new, elementary proof of the standard Hardy inequality, and then to prove a precised
inequality in the spirit of the precised Sobolev inequality [11]. The setting will be both the
classical R space, as well as the Heisenberg group H¢ (for an application of the Hardy
inequality to the Heisenberg group we refer for instance to [3]).

1.1. The R? case. Let us recall the standard inequality in R%: let s be a real number in the
interval ]0,d/2[. There is a constant C' such that for any function u € H*(R?), the following
inequality holds:

(L) [ O 4o < Ol

where the space H* (R%) denotes the homogeneous Sobolev space

(1.2) H'RY) ={ue SR /ue L, (R and HUHHs(Rd) < +oo}
while u denotes the Fourier transform of v and

(13) ey [ PR e

Remarks.

1) When s = 1 and d > 3, Hardy inequality derives immediately by integration by parts
against the radial vector field R =z - V.
For non integer values of s, the proof is much more delicate and requires the proof of the L?
continuity of the operator
(-A)73
EE
2) The basic tool of the proof presented in this work is the paradifferential calculus of J.-M.

Bony [6].
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3) Let us now have a look at the scaling properties of Hardy inequalities. It is easy to see

that inequality (1.1) is invariant under the scaling uy(x) def )\%_Su()\:c) while it is not under
translation and oscillation.

4) To obtain translation invariance, it suffices to consider the more general Hardy inequality

2
(1.4) sup/ Ju@)l” dx < C|lul?
R

a Jrd |z —al® °(RY)?
5) The oscillation invariance holds for the precised Hardy inequality (1.12) proved in this text.
The detailed proof of that result can be found in [1] (see also [2] for an announcement).

In order to state this “precised” inequality, let us recall the definition of homogeneous Besov

spaces. It requires the definition of Littlewood-Paley operators. Let us then begin by recalling
the basis of this theory (for more details, we can consult [6] or [7]).

Proposition 1. Let us denote by C the ring of center 0, of small radius 3/4 and great ra-
dius 8/3. There exist two radial functions x and ¢ the values of which are in the interval [0, 1],
belonging respectively to D(B(0,4/3)) and to D(C) such that

(1.5) VEER!, X(O)+ D p(27%) =1,

q>0
(1.6) Ve e R\ {0}, ) p(27%) =1,

q€Z
(1.7) lp —q| > 2 = supp ¢(27-) Nsupp p(277-) =0,
(1.8) q > 1= supp x Nsupp p(27%) = 0.
Remarks.

1) If we denote by

By = (27 1D)u =240 [ 121w~ y))ulw)dy
where h = F~1yp, the operators A, map LP onto LP and commute with the derivatives.

2) We shall denote by
Squ = Z Apu.

p<q—1
We can prove that

Syu = X(27D)u =21 [ K21~ y))u(y)dy
where h = F1x.
3) Moreover the operators A, satisfy the classical Bernstein inequalities

(1.9) V 1<a<b<oo, |Agulp <C2%G DA ullLe,
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(1.10) V 1<a<b<oo, |Squllpe <C2%G5)|SulLe,

and

1
(111) V 1<p<oo, VkeEN, C_2kq”A ullpe < sup |0%AgullLe < Cr2F||Aul| e

|a|=k
Definition 1. Let s € R be given, as well as p and r, two real numbers in the interval [1, co].
The Besov space B, ,. (R%) is the space of tempered distributions u such that

e The series Y™ Agu converges to u in S'(RY).
def

o llullps mey =

‘2(18”A(IUHLP(R‘1) " (2) < 00

Remarks.

1) It is easy to see that for any real number s, the homogeneous Sobolev space H*(R%)
coincides with B3 ,, and the norms given by (1.2) and Definition 1 are equivalent:

ol ey ~ [[27° N850l g2 | -

2) In the particular case where u € L"(RY), the series Y. A,u converges to u in S'(R%).

This is due to Bernstein inequality (1.10) which implies that

d
[Sjullree < G2 flul| e

The result we will prove is the following.

Theorem 1. Let s be a real number in the interval |0,d/2[ and let p and q be two real
numbers in [1, 00| such that

2d
2<g< <p< o0
d—2s
. . . S_d(%_l) d . . .
There is a constant C' such that, for any functionu € B, , "(R"), the following inequality
holds:
1
2 2
u(x
(1.12) ([ Mol a) <crue oy, el "y
R4 By RY) B, * (R )

where o = ﬁ(p(% -3 -1).

Remarks.

1) When ¢ = 2 and p = oo we find the following inequality :

1
u@) ) 0 .
. < ¢
(1 13) (/Rd |x‘25 dx —CHUHBZ;Q%(R ||UHH5(Rd)

This inequality should be compared to the following similar result derived by P. Gérard, Y.
Meyer and F. Oru in [11], in the case of the Sobolev inequalities.

2s
(1.14) lallze < Cllull %y ol ey



ap 11
2) The following classical result indicates the invariance of (1.12) under oscillations. We refer

for instance to [1] for a proof.

Proposition 2. Let o be a real in the interval |0,d[ and let be f a function in S(R?). Then,

there exists a constant C' such that the oscillatory function f.(x) def f(x)e™“/% | where w

belongs to S?~1, satisfies erHB;: < Ce’.

3) We will construct in what follows a fractal example putting in light that oscillations are
not the sole responsible for smallness of the Besov norms.

4) Inequality (1.12) is optimum in the sense that it fails when ¢ = dz—dz; = p. More precisely,

we have the following result (see [1] for a proof).

Proposition 3. For any constant C, there is a function u € ngaQ(Rd), where q. = ﬁ,
such that

Ju(z)? 2
> : .
/Rd || = CHuHngcz(Rd)

1.2. The H? case. Before stating the precised Hardy inequality on the Heisenberg group H¢,
let us collect a few well known definitions and results on that group. The Heisenberg group H¢
is the space R?¥*! endowed with the following product law:

(:E> Y, S) : (.T/, y/> S/) = (ZL‘ + ZL‘,, Y+ yla s+ s + (y‘ZL‘,> - (y,‘l‘»
So H? is a non commutative group. The Lie algebra of left invariant vector fields is spanned
by the vector fields
1
Xj =0y, +y;0s, Y; =0, —x;0; with j € {l,---,d}, and S=0s= §[Yj,Xj].

In all that follows, we shall denote by Z the family defined by Z; = X; and Z;,4 =Y. One
can associate Sobolev spaces to this system of vector fields through the following definition.

Definition 2. Let k be a non negative integer, we denote by H*(H?) the inhomogeneous
Sobolev space of order k which is the space of the functions u in L?(H?) (for the usual
Lebesgue measure on R?**1) such that

Zjy ... Zju€ L? forany (jm)i<me<e € {1,---,2d}* with £ <k.

and we have

2 def 2
HUHHk(Hd) = Z HZjl'--ZluHm(Hd)'
J1s--J1,0<I<k

Remarks.

1) For any integer k, we can also define the homogeneous Sobolev norm of order k£ on the
Heisenberg group and we have

2d
2 def 2
||uHHk(Hd) = Z ||Zj1"'ZkuHL2(Hd)-
j17"'7jk::1
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2) As in the R? case, there are many ways of extending that definition to the case of indexes
which are real numbers (and one obtains equivalent norms).

Let us point out that on the Heisenberg group H?, there is a notion of dilation defined for a > 0
by

(1.15) 0a(z,8) = (az,a’s),

then the homogeneous dimension of H? is N = 2d + 2. Finally, to state the precised Hardy
inequality, let us introduce the Heisenberg distance to the origin p:
def 1
p(z,y,s) = (2% +y°)° + 7)1,

Theorem 2. Let s be a real number in the interval |0, N/2[, and let p and q be two real
numbers in [1, 00| such that

2<g<

< .
N_gs “P=

Ls—d(i—1
There is a constant C such that for any function u € B:’Q G

holds:
1
u(w)|? 2 o
(1.16) @I 4)" < cfule fal=e
H (2

2 Ls—d(id_-1 :
a p(w)?s B, 277 (o) B, ») (1)
q

where o = ﬁ(p(% - %) — 1) and w = (z,y, ).

(HY), the following inequality

Remarks.

1) The proof of the precised inequality will proceed exactly as in the R? case, once we recall
that the paraproduct algorithm is also valid in H? (see [5]) and prove the equivalent of
Bernstein inequality (1.11) on the Heisenberg group. This inequality will be the subject of
Section 3.2. One can note that this allows in particular to derive a (to our knowledge) new,
elementary proof of the classical Hardy inequality in H¢.

2) As in the R? case, when ¢ = 2 and p = oo we find the following inequality :

1
uw) > \* % -3
1.1 < N N
( 7) (/Hd p(w>25 dw *CHuHBsf%(Hd)HUHHS(Hd)’

0,2

which is in the spirit of the precised Sobolev inequality on the Heisenberg group proved in [5].

3) As in the R? case again, it should be noted that Inequality (1.16) is invariant under
oscillation. (For a detailed proof, we can consult [1]).

Structure of the paper. In Section 2 we start by presenting a short proof of Inequal-
ity (1.1), as well as the proof of Theorem 1 in Paragraph 2.2. Finally Paragraph 2.3 is devoted
to the construction of an example showing another feature of Besov spaces, other than oscil-
lations. Section 3 consists first in a more detailed presentation of the Heisenberg group H¢,
namely with the recollection of some results around the Littlewood-Paley decomposition and
Bony’s paraproduct algorithm. In Paragraph 3.2 is proved a new result concerning the Bern-
stein inequality on H?. Once those preliminaries are known, the proof of Theorem 2 follows
exactly as in the R¢ case, and is omitted.
XIX-5



Acknowledgements. We wish to thank A. Cohen for suggesting the idea of the construction
presented in Section 2.3.

2. THE R% cASE

2.1. Proof of Inequality (1.1). In this section we wish to present an elementary proof of In-
equality (1.1), which relies on Besov spaces. Inequality (1.1) is obviously a direct consequence
of the two following classical propositions.

The first result consists in a product rule in Besov spaces. Using the paraproduct algorithm
of J.-M. Bony [6], it is straightforward to prove the following proposition.

Proposition 4. Let s be a real number in the interval |0,d/2[, and let f and g be two

. . 9sd
functions in H*(R?). Then the product fg is an element of the Besov space B;Sl 2(R%), and

the following estimate holds
1fgll. 25” < CHfHHS(Rd)HgHHS(Rd)a

;2 (R

where the constant C' only depends on s and on the dimension d.

The second classical result shows in what Besov space the function x — || 7% lies.

Proposition 5. Let s be a real number in the interval ]0,d/2[. Then the function x +— |z|~2
belongs to the Besov space Bi;fs (R9).

Putting together Proposition 4 and 5 clearly yields Inequality (1.1).

2.2. Proof of Theorem 1. Let us go now to the proof of Theorem 1. In order to do so we
shall make more precise the product rule given in Proposition 4. Let us recall the paraproduct
algorithm of J.-M. Bony [6]: we have

u? = 2T, u + R(u,u), with T,u def Z Sj_1ulju.

Let us start by recalling that
|| ‘ 2—2a

(2.1) | Tuull g2s-agay < Cllull® _q < Cllul*_,1_1
u Boa (R%) Bo<>22 (R4) B;L;l( q)( 92N( )(Rd)’

thanks to Sobolev embeddings.

To estimate the remainder term R(u,u), we shall use the following elementary interpolation
result.

Lemma 1 ([1]). Let s be a real number in the interval |0,d/2[ and let p and q be two real
numbers in [1, 00| such that

2<g< <p < o0
S

N —
There is a constant C such that for any functions f and g which belong to LP(R®) N L4(R%),
we have
fo(z)
25

CHfHLq(Rd HgHLq(Rd ||f||Lp R4) HgHLp RY)
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with o = p%q(p(% -3 —1).

The Hélder inequality then gives, by definition of R(u,u),

«

R(u, i(s—d(l_1
/ W) o <030 [ S22 D Al o 1Al e

le<1 \jez

l1-o
2j(s—d(3-1
x| 2o 27T T A jul o 18-l o rey
JEZ
and the result follows from the Cauchy-Schwartz inequality.

Theorem 1 is proved.

2.3. Functions supported on a Cantor-like set. In this section we will show that oscilla-
tions are not the sole reponsible for the smallness of a Besov norm. Below we present another
situation, where a sequence of positive (in particular non oscillatory) functions converges to-
wards zero in a negative Besov space, while remaining constant in a Lebesgue norm. More
precisely we have the following results; we wil give the main ideas of the proof below, and
refer to [1] for details.

Proposition 6. There is a sequence (f,)nen of positive functions which saturate the precise
Sobolev embedding (1.14).

Proposition 7. There is a sequence (fn)nen of positive functions such that || f,| ;. goes to
infinity with n whereas the Hardy norm remains bounded:

1
2 2
sup </ fn(f) dx) < 400.
neN |.T‘ s

The proof of that result is based on fractal ideas: basically the support of f,, is supported on
a Cantor-type set, when n tends to oo. In order to construct the family, let us consider the
following application, which acts on smooth, compactly supported functions on the cube @)

defined by Q def [—%, %]d. Let T be the application defined by
D(Q) — D(Q)
T foe TP ST g,

Je{-1,1}¢
where f;(z) = f(4(x —2)) and z; = 2(J1,- -, J4). We have the following lemma.

Lemma 2. The application T satisfies the following bounds, for all p € [1,+o0] and all real
numbers s such that s + d(1 — %) > 0:
_1
1T Al = 2"l e
d(1—1)+2
ITA gy, < 27 £l +Cllflla.
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Let us start by computing ||Tf||z». We can define @ def supp fs, and since the cubes Q
and @y do not meet if J # J', we have

ITAI =22 > Nl
Je{-1,1}¢
But || fs]lr = 272¥P||f| 1, so the result follows.

Let us now turn to the Besov norm ||T'f| 5. . We have by definition
D,

j ST r 1
ITflsy, = (2 1A 70)F

JEZ

On the one hand, Bernstein’s inequality, along with the fact that s + d(1 — Il]) > 0 yields

j 1
(" 2| AT fII5)7 < ClIf g

Jj<1
The case when j > 1 is more delicate, and it is here that the special structure of the support
of T'f will appear. Let us define the set, for § > 0 small enough,

Q° ¥z eR|d(x UQJ < 4},

Then we write

. 1
("2 ATf50)r < T+ I,
7>1

where

def def

1 isr 1
(DA [egr)t and I (ST 22T 00)
j>1 j>1
We can write, for z € °Q°
AT f(x)| < Cn2/927 7NN /Q B2 (2 = )27 (& — )|V Tf ()] dy.
UQy
We infer, under Young inequality and choosing N large enough,

L <Cn|fle-
Finally let us estimate Is. We notice that
Q° = U BY, where B = def Qy+0,
Je{-1,1}¢
hence, for § small enough, we have Bg N Bg/ = (if J # J', and if = belongs to Bf;, then for
any J' # J, we have d(z, B,) > 4.
Therefore, we can write for z € Q°

Aj(Tf) (@) =) Aj(Tf)1ps ()
J

Now
AT () = 298 (F) s () + 20 3 Aj(F) 15 (),
J'£J
XIX-8



so that A;(Tf) = A+ B, with
A=2"Y Aj(f)1lpy and B=20% "% Aj(fr)lps.
J J JAT
On the one hand we have
Bo) =203 3 2 [ h@io - ) fly) dy- L)
T T R4
and reasoning as above we find that
j ST r \L
Q_2IBl)" < Clflp
Jj=1
Going back to the estimate of Is we gather
j 1
L < C|fllp +20Q 2 1) Aj(f1) - 1 ll1e) 7
Jj=1 J

Since the sets Bg are disjoint, we get
DIFVEHE I EDY 125 (FD N0 3
J J
As fj(z) = f(4(x — xs)), we deduce that

_9od
125 (FN)lle = 2722 (125 o (£)| o
Thus
_d
1D A5(f0) g llee <277 1A —2(f)1,
J
which implies that

d(1—-1
I < Ollfllp + 254 £,
This ends the proof of the lemma.

Lemma 2 allows us to construct the family of Propositions 6 and 7, simply by choosing

def Tnf
In = T
177 e

with 2—17 =1 — £ and where f € D(Q). We refer to [1] for details.

3. THE CASE OF THE HEISENBERG GROUP

3.1. Basic facts about the Heisenberg group. To introduce the Littlewood-Paley theory
on the Heisenberg group, we need to recall the definition of the Fourier transform in that
framework. We refer to [18] and the references therein for more details. The Heisenberg
group being non commutative, the Fourier transform on H? is defined using irreducible uni-
tary representations of H?. We shall choose here the Bargmann representations described
by (u},Hy), with A € R\ {0}, where H, are the spaces defined by

Hy, = {F holomorphic on C, ||F||x, < oo},
XTX-9



where we define
def , 2|\ _ 2
(3.1) IFIBe, G2 [ eI (e P,

and u” is the map from H¢ into the group of unitary operators of M defined by
w) JF(€) = F(€ - 7)eMtPEE2) for A >0,
ud JF(€) = F(€ — 2)es=2MEZ-EF2) for X <0,
Let us notice that H ) equipped with the norm (3.1) is a Hilbert space and that the monomials

WO
' Y

(3.2) Faa(§) = Jar

constitute an orthonormal basis.

We associate the Fourier transform of an integrable function of H¢ through the following
definition.

Definition 3. For f € L'(H), we define

F(HA) = . f(z, 8)ul (dzds.

The function F(f), with values in the bounded operators on Hy, is by definition the Fourier

transform of f.

The convolution product of two functions f and g on H¢ is defined by

Frgtw) = [ flwng)dn
with the useful Young inequalities. Under the fact that, for any A, the map
uw* : HY — U(H,)
is a group morphism, it is easy to verify that

(3-3) F(fxg)(N) = F(F)A) o F(g)(N)-

It turns out that for radial functions on the Heisenberg group, the Fourier transform becomes
simplified and puts into light the quantity that will play the role of the frequency size. Let us
first recall the concept of radial functions on the Heisenberg group.

Definition 4. A function f defined on the Heisenberg group H¢ is said to be radial if it is
invariant under the action of the unitary group U(d) of C%, which means that for any u € U(d),
we have

f(z,8) = f(u(z),s), Y(zs) e HL.

A radial function on the Heisenberg group can then be written under the form

f(z:8) = g(|2, 5)-

The Fourier transform of radial functions of L?(H?), satisfies the following formulas:

(3'4) f(f)()\)Fa,)\ = R\a|()‘)Fa,)\
XIX-10



where
m+d—1
m

-1
R = ( ) [ DA N s,

and where Lg) are Laguerre polynomials.

The key point in the construction of the Littlewood-Paley decomposition on H? lies in the
following proposition proved in [4] and [5].

Proposition 8. For any function Q € D(R) constant near the origin, the series
2d—1 » 3 3 9
£er) = 2 3 [ QUm + LD @) I o
m
converges in S(H?).

Now we are ready to define the Littlewood-Paley decomposition on HY. We will not give any
proof but refer to the construction in [4] and [5] for all the details, and in particular for the
proof of the following proposition.

Proposition 9 ([4], [5]). Let us denote by Cy the ring {T € R, 3 < |7| < §} and by By the

ball {r € R, |7| < %} Then there exists two radial functions R* and R* the values of which
are in the interval [0, 1], belonging respectively to D(By) and to D(Cy) such that

(3.5) VreR, Ri(r)+) R(@2%r)=1
Jj=0
and
(3.6) vreR*, ) R(27¥r)=1
JEZ

and satisfying as well the support properties
(3.7) [p =gl > 1= supp R*(27%) N supp R*(27%) =0
(3.8) and q>1= supp R* Nsupp R*(27%9.) = (.
Moreover, owing to Proposition 8, it can be proved that there are radial functions of S(H?),
denoted 1/ and ¢ such that
Fp) (N Fap = Rl (N Fan and  F(@)(A)Fax = Riy(\) Fan,

where we have noted R* (1) = R*((2m + d)7) and R*,(7) = R*((2m + d)7). A simple
computation shows finally that if we state

0;i(2,8) = 2N p(292,2%75) and  4j(z,s) = 2VIp(272,2%5),
where N % 2g + 2 is the homogeneous dimension of H?, then we have
F(@) N Fap = Ry (27%X) and - F(0;)(\)Fap = RE (275 N).

|al |

Remarks.
XIX-11



1) Now as in the R? case, we define the Littlewood-Paley operators Aj and S;, for j € Z, by
FA NN Fap = RiyQ2NF(f)A) Far

|al
F(Si)NFap = Ry NF()N) Far.

It is easy to see that

Aju = ux 2N p(6,;-)
and

Siu = u* 2NTp(84;-)
which implies that those operators map LP into L for all p € [1, 00| with norms which do not
depend on j and commute with the left invariant vector fields on the Heisenberg group.

2) Along the same lines than the R? case (Definition 1), we can define Besov spaces on the
Heisenberg group (see [3]).

3) Paraproduct operators on the Heisenberg group similar to those defined by J.-M. Bony [6]
are built in [5], although there is no simple formula for the Fourier transform of the product
of two functions, and the definition of [6] turns out to be effective in this framework.

3.2. Bernstein inequality on the Heisenberg group. Using the complex system coordi-
nates (z,s) obtained through the formula z; = x; + iy;, we have another generator system
of the Lie algebra of left invariant vector fields on the Heisenberg group H? formed by the
complex vector fields:

— 1 —
Zj = 0zj +1zj0s, Zj=0%Z; —izj05, with j¢ {1,---,d} and S=0,= ?[Zj,Zj].
1

Let us point out that when F' is an element of the basis of the Hilbert space H) defined
by( 3.2), we have the following useful formulas, for any j € {1,...,d}. If A >0,

(3.9) F(Zi)MNFax = =V2AAMV i +1F (A Fay .41

(3.10) F(Zi ) NFax = V2ANVEGF() N Fay,a5-1,00
(3.11) F(ZiZi[)NFapx = —2IM(aj + 1)F(f)(N)Fax,

(
(3.12) F(ZiZifYNFar = —2MNoyF(f)(A)Fan,
and with similar formulas if A < 0.

To state the Bernstein inequality on the Heisenberg group, we need to define the concept of
localization procedure in the frequency space on the framework of the Heisenberg group and
to prove that the left invariant vector fields act in a particular way on distributions which are
localized in frequency space in a ball or a ring. We will only state the definition in the case of
smooth functions — otherwise one needs an additional regularization by convolution (see [3]
or [5]).

Definition 5. Let C(
origin.

= C(0,71,72) be a ring and B, = B(0,r) a ball of R center at the

T1,72)

e A function u in S(H?) is said to be frequency localized in the ball 27 B N

F(u)N) Fax = L(gja|+d)-1228(A) F (u) (A) Faxs
XIX-12



e A function u in S(H?) is said to be frequency localized in the ring 27C ST i
F(u)N) Fax = L(gjaf+a)-122ic(A)F (w)(A) Fox-

The following result is the analogue of Bernstein inequality in the classical case. It describes
the cost of the left invariant derivatives of a frequency localized function.

Lemma 3. Let C(,, ,,) be a ring and B, a ball of R center at the origin. For any non
negative integer k, there exists a constant Cy, so that, for any couple of real numbers (p,q)
such that ¢ > p > 1 and any function u of LP(H?), we have:

e Ifu is frequency localized in the ball 2/ B r» then we have
(3.13) sup 40l agees < Cr2™ 5T | o ey,

where XP denotes a product of k left invariant vectors fields.
e On the other hand, if u Is frequency localized in the ring 2’C( s, /i), then we have

(3.14) C;l2jk“u||Lp(Hd) < |/sgl‘lf>k H‘XﬂuHLP(H‘i) < Ck2iju||LP(Hd)7

where XP still denotes a product of k left invariant vectors fields.

Remarks
1) Estimate (3.13 ) was proved in [5].

2) Contrary to the case of the Laplacian —Aya (see [3]), we do not dispose of a simple
decomposition of the left invariant vector fields in the basis of the Fy, x. Therefore, the proof
of the second result of this lemma is more delicate than the equivalent estimate in the classical
case.

Let us prove Estimate (3.14) of Lemma 3. By density, it suffices to suppose that the function u
is an element of S(HY). First, let us recall that thanks to (3.11), we have for any k € {1,...,d}

F(ZpZru)(N) Foyn = =2|A|(ag + 1)F(w)(N)Fan, when >0,
and
f(Zkau)()\)Fa)\ = —2‘)\‘0616.?(@6)()\)1*—’&7)\, when A < 0.

Now the frequency localization of  in the ring 27 C(r,ym) 2llows us to write

F(u) M) Fax = Ry (277 N)F (u)(A) Fa,n,

|al
with R"a|()\) = R'((2|a| + d)A), R’ being a function of D(R*) whose value is 1 near C,, ).
Therefore
272
21272 A (Laso(ok + 1) + 1acoa)
The fact that R’ € D(R*) ensures, owing to Proposition 8, the existence of a radial func-
tion h* € S(H?) such that

Fu)AN)Fax =

|/a‘ (2723)\)]-‘(Zk7ku) ()\>Fa,)\'

1

T2 (Taso(ok + 1) + Lacoo)
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F(R)N) Fa = R (A Fap.



Now, if we write h?(z, s) = 20VRk(5,;+), we get thanks to (3.3)

Fu)N) Fap =29 F(Zu Zyuw) (N (F(RF) (V) Fan),

which implies that u = 272/ 7, Z,u x h? . Thus Young’s inequality leads to

[ll 1o ey < C27 | 21 Zul| Loy,

and then owing to (3.13)

[ull 2o ey < C277 ([ Z ]| 1o a0y -

Along the same lines, we can prove that

[l o (rray < C277|| Zieu|| 1o gy,

which leads by induction to the second Estimate (3.14).

(1
2]

[10]
11]
12]
13]
[14]
[15]
[16]
17]
18]

[19]
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