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QUASI PERIODIC SOLUTIONS OF NONLINEAR

RANDOM SCHRÖDINGER EQUATIONS

W-M. Wang

CNRS, Universite Paris-Sud

The nonlinear random Schrödinger equation.

We seek time quasi-periodic solutions to the nonlinear random Schrödinger equa-

tion

i
∂

∂t
u = (ε∆ + V )u + δ|u|2pu (p > 0), (1.1)

on Z
d × [0,∞), where 0 < ε, δ � 1, ∆ is the discrete Laplacian:

∆ij = 1, |i − j|`1 = 1,

= 0, otherwise,
(1.2)

V = {vj}j∈Zd , the potential, is a family of time independent independently identi-

cally distributed (i.i.d.) random variables with common distribution g = g̃(vj)dvj ,

g̃ ∈ L∞. The probability space is taken to be

R
Z

d

with measure
∏

j∈Zd

g(vj) =
∏

j∈Zd

g̃(vj)dvj , g̃ ∈ L∞. (1.3)

V = {vj}j∈Zd serve as parameters for the nonlinear problem in (1.1).

Given an initial condition u(0) in `2(Zd), one of the central questions is whether

u(t) remains localized for all t, i.e., if u(0) ∈ `2(Zd), ∀ε, can one find R, such that

‖u(t)‖`2({Z\[−R,R]}d) < ε, ∀t? (1.4)

(From now on, we write | | for | |`1 , ‖ ‖ for ‖ ‖`2 .) When ε = δ = 0, the answer

to (1.4) is affirmative. Since u(0) =
∑

j∈Zd ajδj , aj → 0, as |j| → ∞, u(t) =
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∑

j∈Zd ajδje
−ivjt is almost-periodic (infinite number of frequencies) and the upper

bound in (1.4) is trivialy verified.

In this talk, we describe a recent result in [BW2], where for appropriate initial

conditions u(0), time quasi-periodic solutions to (1.1) were constructed. The answer

to (1.4) is therefore affirmative for such u(0)’s. Before we enter into the heart of

the matter, we first address question (1.4) to

The linear random Schrödinger equation.

When δ = 0, (1.1) reduces to the linear random Schrödinger equation:

i
∂

∂t
u = (ε∆ + V )u,

def
= Hu

(1.5)

on Z
d × [0,∞). When 0 < ε � 1, it is well known from the works in [FS, GMP,

FMSS, vDK, AM, AFHS, AENSS] etc. that the upper bound in (1.4) is satisfied.

This is customarily called Anderson localization (A.L.) after the physicist P. Ander-

son [An]. Since the potential is time independent: V (j, t) = V (j), properties of time

evolution can be deduced from the spectral properties of H, which we summarize

below.

Let σ(H) be the spectrum of H. For H defined in (1.5),

σ(H) = [−2εd, 2εd] + supp g, a.s. (1.6)

(Recall the probability space defined in (1.3).) [CFKS, PF]. If 0 < ε � 1 and the

probability measure satisfies (1.3), then almost surely the spectrum of H is pure

point, σ(H) = σpp, with exponentially localized eigenfunctions: φj , j ∈ Z
d.

Given u(0) ∈ `2(Zd), we decompose u(0) as u(0) =
∑

j∈Zd ajφj . So

u(t) =
∑

j∈Zd

ajφje
−iωjt, (1.7)

where ωj are the eigenvalues for the eigenfunctions φj . u(t) is almost-periodic and

verifies the upper bound in (1.4). So equation (1.5) has A.L.

Some motivations for studying equation (1.1).

XI–2



Schrödinger equations are equations that describe physical systems, which typ-

ically correspond to a n-body problem. The linear equation in (1.5) is a 0th order

appproximation, where the n-body interaction is lumped into the effective potential

V . Quantum mechanically, |u|2 is interpreted as particle density, so the nonlinear

term in (1.1) can be interpreted as modelling particle-particle interaction. (The

nonlinear term in (1.1) can be more general and of convolution type. It will not

affect our construction below.) This is sometimes called the Hartree-Fock approx-

imation (cf. [O, LL, S]) and is a first order approximation to the original n-body

problem. This is our first motivation to study (1.1). Other physical motivations

along this line appear in [FSW].

In particular, our method permits us to construct quasi-periodic solutions for the

Landau-Lifschitz equations on nonlinear classical spin waves with a large random

external magnetic field. Thus

Ṡj = Sj × [(∆S)j + hj ] (j ∈ Z
d)

where Sj are unit vectors in R
3 and hj = Vj

→
e 3 say; with V = (Vj)j∈Zd a large

random potential.

As explained in [FSW], we may then seek for a solution Sj ≈ e3 and the per-

turbation is subject to an equation of the form (1.1), but with a nearest neighbor

convolution nonlinearity instead of the local one |u|2pu (see [FSW] for details). As

mentioned before, (1.1) was chosen as a model but the method described in the

paper is sufficiently robust to cover in particular any nonlinearity with finite range

interactions.

Our second motivation originates from KAM type of stability questions for in-

finite dimensional dynamical systems. (For results in the standard KAM context,

see e. g. [E].) (1.1) is a Hamiltonian PDE. It can be recast as the equation of

motion corresponding to a Hamiltonian of a perturbed Z
d-system of coupled har-

monic oscillators with i.i.d. random frequencies (see (2.2, 2.3)). When δ = 0, the

linear system has pure point spectrum: σ(H) = σpp. This corresponds to the KAM

tori scenerio. A natural question is the stability of such invariant tori under small

XI–3



(0 < δ � 1) perturbations, which leads to construction of quasi-periodic or almost

periodic solutions to (1.1).

Remark. Previously in [AF, AFS], solutions to the nonlinear eigenvalue problem

(ε∆ + V )φ + δ|φ|2pφ = Eφ on `2(Zd)

were found, which give the time periodic solutions to (1.1) of the particular form

u(j, t) = φ(j)e−iEt.

A sketch of the construction.

We expand in the Fourier basis: ein·ωtδk(j) and as an ansatz, seek solutions of

the form

u(`, t) =
∑

(j,n)∈Zd+ν

û(j, n)ein·ωtδj(`), (1.8)

with the initial condition

u(`, 0) =

ν
∑

k=1

akδk(`), satisfying

ν
∑

k=1

|ak| � 1, (1.9)

where in (1.9), we identify {jk}ν
k=1 with {1, ..., ν}, δk with δjk

(k = 1, ..., ν). The

unperturbed frequencies are therefore ω = ω(V) = V ∈ R
ν , where Vdef

= {vjk
}ν

k=1 are

the random potentials at sites jk ∈ Z
d.

Substituting (1.8) into (1.1), we obtain the following equation for the Fourier

coefficients:

(n · ω + ε∆j + Vj)û(j, n) + δ[(û ∗ v̂)∗p ∗ û](j, n) = 0, (1.10)

where v̂(j, n) = ¯̂u(j,−n), the convolution ∗ is in the n variable only, ∗p denotes the

p-fold convolution and we added the subscript j to operators that originated from

`2(Zd). We also write the equation for v̂:

(−n · ω + ε∆j + Vj)v̂(j, n) + δ[(û ∗ v̂)∗p ∗ v̂](j, n) = 0. (1.11)

Combining (1.10, 1.11), we then have a closed system of equations for y =

(

û

v̂

)

,

which we write as

F (y) = 0. (1.12)
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Equation (1.12) is a Z
d+ν system of equations. Let y0 = y(t = 0).

supp y0 = {jk, −ek}ν
k=1 ∪ {jk, ek}ν

k=1,

where ek are the unit vectors of Z
ν . We seek solutions to (1.12) with y fixed at

the initial condition on supp y0. We make a Lyapunov-Schmidt decomposition as

in [CW1,2, B1,3]. Let y0 = y(t = 0). The equations

F (y) = 0|Zd+ν\supp y0
on `2(Zd+ν\supp y0)

are the so called P -equations, the rest are the Q-equations. The P -equations are

used to determine y(j, n) on {supp y0}c. On supp y0, y(j, n) are held fixed at the

initial condition from (1.9). Instead the ν Q-equations determine ω = ω(V).

We use a Newton scheme to solve the P -equations (for more details, see section

3). This leads to investigate the invertibility of the linearized operators F ′
i (yi),

where yi is the ith approximate solution, F ′
i is F ′ restricted to [−M i+1, M i+1]d+ν

(i ≥ 0) for appropriate M .

The random potentials V = {vjk
}ν

k=1 ∈ R
ν are the parameters in the problem.

Invertibility of F ′
i (yi) are assured by appropriate incisions in V. Similar to the

linear case in [BW1], this is done by using semi-algebraic set techniques to control

the complexity of the sigular sets and Cartan type of theorem for analytic matrix

valued functions to control the measure.

The main difference with the linear case in [BW1] is that F ′
i are evaluated at

different yi. But due to rapid convergence of the Newton scheme, made possible by

estimates on F ′
i′(yi′) for i′ < i, this is within the margin of estimates.

Solving the P -equations iteratively is the main part of the work. The solutions to

the P -equations are then substituted into the Q-equations to determine ω = ω(V)

iteratively by using the implicit function theorem. We obtain time quasi-periodic

solutions of the form (1.8) to (1.1), which are exponentially localized (both in the

spacial and Fourier space) to the initial condition (1.9), with modified frequencies

ω = ω(V), which are (ε + δ)-close to the unperturbed frequencies V = {vjk
}ν

k=1.

We therefore have

Statement of the Theorem.
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Theorem 1. Consider the nonlinear random Schrödinger equation

i
∂

∂t
u = (ε∆ + V )u + δ|u|2pu, (p ∈ N

+), (1.14)

where ∆ is the discrete Laplacian defined in (1.2), V = {vj}j∈Zd is a family of

i.i.d. random variables with common distribution g satisfying (1.3). Fix jk ∈ Z
d,

k = 1, · · · , ν. Let R = {jk}ν
k=1 ⊂ Z

d, V = {vα}α∈R ∈ R
ν. Consider an unperturbed

solution of (1.14) with ε, δ = 0,

u0(y, t) =
ν

∑

k=1

ake−ivjk
tδjk

(y),

with
∑ν

k=1 |ak| sufficiently small. Let a = {ak}ν
k=1.

For 0 < ε � 1, ∃Xε ⊂ R
Z

d\R
ν of positive probability, such that for 0 < δ � 1,if

we fix x ∈ Xε, there exists Gε,δ(x; a) ⊂ R
ν, Cantor set of positive measure. There

is ω = ωε,δ(V; a) smooth function defined on Gε,δ(x; a), such that if V ∈ Gε,δ(x; a),

then

uε,δ,x(y, t) =
∑

(j,n)∈Zd+ν

û(j, n)ein·ωtδj(y) (1.15)

is a solution to (1.14), satisfying

û(jk,−ek) = ak,

∑

(j,n)/∈S

ec(|n|+|j|)|û(j, n)| <
√

ε + δ (c > 0),

|ω − V| < c(ε + δ),

(1.16)

for some c > 0, and where {ek}ν
k=1 are the basis vectors for Z

ν and S = {jk,−ek}ν
k=1 ⊂

Z
d+ν . The sets Xε and Gε,δ(x; a) satisfy

Prob Xε → 1, mes R\Gε,δ(x; a) → 0 as ε + δ → 0.

Remark. The set Xε ∈ R
Z

d\R
ν only depends on ε; while the set Gε,δ(x; a) ∈ R

ν

depends on ε, δ, x ∈ Xε (the random potentials in Xε) and a (the initial amplitude).
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Corollary. There exists Xε,δ ⊂ R
Z

d

of positive probability, 0 < ε � 1, 0 < δ � 1,

satisfying

Prob Xε,δ → 1 as ε + δ → 0,

such that for initial amplitudes a sufficiently small, there are quasi-periodic solu-

tions to (1.14).

An insertion into a larger picture.

The theorem presented above is proven for i.i.d. random potentials V = {vj}j∈Zd .

The construction used to prove the theorem is, however general. It only requires an

eigenvalue separation property on the linear operator H, (aside from ε and δ being

small). For example, in the i.i.d. random case, this is manefested as:

if Λ1, Λ2 are two subsets at scale L and Λ1 ∩ Λ2 = ∅, then

dist (σ(H1), σ(H2)) ≥ e−Lσ

(0 < σ < 1),

on a probability subset of measure at least 1 − e−Lσ′

(0 < σ′ < σ). (1.17)

When V is a given function, similar separation property could be obtained from

number theoretical considerations (see e.g., [B3-5]).

The construction of time quasi-periodic (or almost-periodic) solutions needs a

parameter. This parameter can sometimes be extracted from amplitude-frequency

modulation, see e.g., [B1, 3, KP]. Nonlinear random Schrödinger equation is an

equation endowed with a family of parameters. The separation property (1.17) can

be easily obtained by a first order variation. So it is a natural medium to enact

such constructions.

The continuum Schrödinger equations (linear or nonlinear) are a more frequently

studied subject. The discrete nonlinear Schrödinger equation presented here should

be seen as the analogue of the continuum nonlinear Schrödinger equation in a

compact domain, e.g., on a torus. The Z
d lattice therefore can be seen as the

indices of the eigenvalues or eigenfunctions for the underlying linear Schrödinger

operator.
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Time quasi-periodic solutions have been constructed for the continuum nonlin-

ear Schrödinger or wave equation in 1-D, on a finite interval with either Dirichlet

or periodic boundary conditions. See for example, the works of Bourgain, Kuksin,

Pöschel and Wayne in [B1, KP, W]. In [B3], time quasi-periodic solutions are con-

structed for the 2-D nonlinear Schrödinger equation on T
2.

The construction presented here is related to those in [B1-5], which use a Newton

scheme directly on the equations. This direct approach is originated by Craig

and Wayne in [CW1,2]. It has the advantage of not relying on the underlying

Hamiltonian structure. The Hamiltonian structure does assure, however, the reality

of the frequency ω during the iteration.

We remark also that the present method, as it stands, does not yet extend to the

construction of almost-periodic solutions. This is because our point of perturbation

is the equation

i
∂

∂t
u = V u.

In order to construct almost-periodic solutions, we will need more informations on

the spectrum of the linear operator H = ε∆ + V .

In [B2], the construction of almost-periodic solutions was made possible by the

precise knowledge of the spectrum of the linear operator and the fact that the

perturbation is quartic (in the Hamiltonian). In the present case it is quadratic.

Almost-periodic solutions have also been constructed by Pöschel [Pö2] in the case

of a nonlinear Schrödinger equation, where the nonlinearity is “nonlocal”.

PDE’s (such as (1.1)) typically correspond to the so called “short range” (but

not finite range) case. In the “finite range” case, which typically corresponds to per-

turbation of integrable Hamiltonian systems, almost-periodic solutions have been

constructed in e.g., [FSW, Pö1, CP] among others.

Results like those in the Theorem 1 are nice, in the sense that they give very

detailed information on the solutions. But the initial conditions are very special.

It is natural to inquire what happens to more generic initial conditions. We end

the talk by presenting a result in that direction. This is the theorem in [BW3].
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We consider a slightly tempered equation in 1 − d:

iq̇j = vjqj + ε(qj−1 + qj+1) + λjqj |qj |2 = 0, j ∈ Z,

where we take for instance V = {vj} to be independent randomly chosen variables

in [0, 1] (uniform distribution). The multiplier {λj}j∈Z satisfies the condition

|λj | < ε(|j| + 1)−τ

with τ > 0 fixed and arbitrarily small. Note that τ = 0, λj = 1 for all j ∈ Z, is the

standard lattice random Schrödinger equation.

We have the following bound on the discrete equivalent of H1 norm:

Theorem 2. Given τ > 0, κ > 0 and taking 0 < ε < ε(τ, κ), the following is true

almost surely in V . If at t = 0, the initial datum {qj(0)}j∈Z satisfies

∑

j∈Z

j2|qj(0)|2 < ∞

then
∑

j∈Z

j2|qj(t)|2 < tκ as t → ∞.

The bound in Theorem 2 shows that if there is propagation, it is very slow ∼ tκ/2.

If the initial datum is in H1, then the growth of H1 norm in time cannot be faster

than tκ/2. (Recall also that ∼ t1/2 is diffusive, ∼ t is ballistic.)
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