@article{SEDP_2003-2004____A9_0, author = {Fukuizumi, Reika}, title = {Stability of standing waves for nonlinear {Schr\"odinger} equations with potentials}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:9}, pages = {1--8}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2003-2004}, mrnumber = {2117041}, language = {en}, url = {http://www.numdam.org/item/SEDP_2003-2004____A9_0/} }
TY - JOUR AU - Fukuizumi, Reika TI - Stability of standing waves for nonlinear Schrödinger equations with potentials JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:9 PY - 2003-2004 SP - 1 EP - 8 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://www.numdam.org/item/SEDP_2003-2004____A9_0/ LA - en ID - SEDP_2003-2004____A9_0 ER -
%0 Journal Article %A Fukuizumi, Reika %T Stability of standing waves for nonlinear Schrödinger equations with potentials %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:9 %D 2003-2004 %P 1-8 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://www.numdam.org/item/SEDP_2003-2004____A9_0/ %G en %F SEDP_2003-2004____A9_0
Fukuizumi, Reika. Stability of standing waves for nonlinear Schrödinger equations with potentials. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2003-2004), Exposé no. 9, 8 p. http://www.numdam.org/item/SEDP_2003-2004____A9_0/
[1] G. Baym and C. J. Pethick, “Ground-state properties of magnetically trapped Bose-condensed rubidium gas”, Phys. Rev. Lett. Vol. 76 (1996), 6–9.
[2] H. Berestycki and T. Cazenave, “Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires”, C. R. Acad. Sci. Paris. Vol. 293 (1981), 489–492. | Zbl
[3] T. Cazenave, “An introduction to nonlinear Schrödinger equations,” Textos de Métods Matemáticos 26, IM-UFRJ, Rio de Janeiro, 1993.
[4] T. Cazenave and P. L. Lions, “Orbital stability of standing waves for some nonlinear Schrödinger equations”, Commun. Math. Phys. Vol. 85 (1982), 549–561. | Zbl
[5] R. Y. Chiao, E. Garmine and C. H. Townes, “Self-trapping of optical beams”, Phys. Rev. Lett. Vol. 13 (1964), 479–482.
[6] C. Cid and P. Felmer, “Orbital stability of standing waves for the nonlinear Schrödinger equation with potential”, Rev. Math. Phys. Vol. 13 (2001), 1529–1546. | Zbl
[7] G. Fibich and X. P. Wang, “Stability of solitary waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities”, Physica D. Vol. 175 (2003), 96–108. | Zbl
[8] R. Fukuizumi, “Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential”, Discrete Contin. Dynam. Systems. Vol. 7 (2001), 525–544. | Zbl
[9] R. Fukuizumi and M. Ohta, “Instability of standing waves for nonlinear Schrödinger equations with potentials”, Differential and Integral Eqs. Vol. 16 (2003), 691–706. | Zbl
[10] R. Fukuizumi and M. Ohta, “Stability of standing waves for nonlinear Schrödinger equations with potentials”, Differential and Integral Eqs. Vol. 16 (2003), 111–128. | Zbl
[11] R. Fukuizumi, “Stability of standing waves for nonlinear Schrödinger equations with critical power nonlinearity and potentials,” Preprint. | Zbl
[12] A. Griffin, D. W. Snoke and S. Stringari, “Bose-Einstein condensation,” Cambridge University Press, Cambridge, 1995.
[13] M. Grillakis, J. Shatah and W. Strauss, “Stability theory of solitary waves in the presence of symmetry I”, J. Funct. Anal. Vol. 74 (1987), 160–197. | Zbl
[14] M. Grillakis, J. Shatah and W. Strauss, “Stability theory of solitary waves in the presence of symmetry II”, J. Funct. Anal. Vol. 94 (1990), 308–348. | Zbl
[15] M. Hirose and M. Ohta, “Structure of positive radial solutions to scalar field equations with harmonic potential”, J. Differential Eqs. Vol. 178 (2002), 519–540. | Zbl
[16] M. Hirose and M. Ohta, “Uniqueness of positive solutions to scalar field equations with harmonic potential”, Preprint.
[17] Y. Kabeya and K. Tanaka, “Uniqueness of positive radial solutions of semilinear elliptic equations in and Séré’s non-degeneracy condition”, Commun. Partial. Differential. Eqs. Vol. 24 (1999), 563–598. | Zbl
[18] M. Kunze, T. Küpper, V. K. Mezentsev, E. G. Shapiro and S. Turitsyn, “Nonlinear solitary waves with Gaussian tails”, Physica D. Vol. 128 (1999), 273–295. | Zbl
[19] M. K. Kwong, “Uniqueness of positive solutions of in ”, Arch. Rational Mech. Anal. Vol. 105 (1989), 234–266. | Zbl
[20] Y. Li and W. N. Ni, “Radial symmetry of positive solutions nonlinear elliptic equations in ”, Commun. Partial Differential. Eqs. Vol. 18 (1993), 1043–1054. | Zbl
[21] Y. G. Oh, “Stability of semiclassical bound states of nonlinear Schrödinger equations with potentials”, Commun. Math. Phys. Vol. 121 (1989), 11–33. | Zbl
[22] Y. G. Oh, “Cauchy problem and Ehrenfest’s law of nonlinear Schrödinger equtions with potentials”, J. Differential Eqs. Vol. 81 (1989), 255–274. | Zbl
[23] H. A. Rose and M. I. Weinstein, “On the bound states of the nonlinear Schrödinger equation with a linear potential”, Phyica D. Vol. 30 (1988), 207–218. | Zbl
[24] J. Shatah, “Stable standing waves of nonlinear Klein-Gordon equations”, Commun. Math. Phys. Vol. 91 (1983), 313–327. | Zbl
[25] J. Shatah and W. Strauss, “Instability of nonlinear bound states”, Commun. Math. Phys. Vol. 100 (1985), 173–190. | Zbl
[26] C. Sulem and P.-L. Sulem, “The nonlinear Schrödinger equation. Self-focusing and wave collapse,” Applied Mathematical Sciences, 139. Springer-Verlag, New York, 1999. | Zbl
[27] M. Wadati and T. Tsurumi, “Collapses of wavefunctions in multi-dimensional nonlinear Schrödinger equations under harmonic potential”, J. Phys. Soc. Japan. Vol. 66 (1997), 3031–3034. | Zbl
[28] M. I. Weinstein, “Nonlinear Schrödinger equations and sharp interpolation estimates”, Comm. Math. Phys. Vol. 87 (1983), 567–576. | Zbl
[29] V. E. Zakharov, “Collapse of langmuir waves”, Sov. Phys. JETP Vol. 35 (1972), 908–912.
[30] J. Zhang, “Stability of standing waves for the nonlinear Schrödinger equations with unbounded potentials”, Z. Angew. Math. Phys. Vol. 51 (2000), 489–503. | Zbl
[31] J. Zhang, “Stability of Attractive Bose-Einstein Condensates”, Journal of Statistical Physics. Vol. 101 (2000), 731–745. | Zbl
[32] J. Zhang, “Sharp criteria for blowup and global existence in nonlinear Schrödinger equations under a harmonic potential”, (1999), Preprint.