@article{SEDP_2003-2004____A14_0, author = {Gallay, Thierry}, title = {Equations de {Navier-Stokes} dans le plan avec tourbillon initial mesure}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:14}, pages = {1--14}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2003-2004}, mrnumber = {2117046}, language = {fr}, url = {http://www.numdam.org/item/SEDP_2003-2004____A14_0/} }
TY - JOUR AU - Gallay, Thierry TI - Equations de Navier-Stokes dans le plan avec tourbillon initial mesure JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:14 PY - 2003-2004 SP - 1 EP - 14 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://www.numdam.org/item/SEDP_2003-2004____A14_0/ LA - fr ID - SEDP_2003-2004____A14_0 ER -
%0 Journal Article %A Gallay, Thierry %T Equations de Navier-Stokes dans le plan avec tourbillon initial mesure %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:14 %D 2003-2004 %P 1-14 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://www.numdam.org/item/SEDP_2003-2004____A14_0/ %G fr %F SEDP_2003-2004____A14_0
Gallay, Thierry. Equations de Navier-Stokes dans le plan avec tourbillon initial mesure. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2003-2004), Exposé no. 14, 14 p. http://www.numdam.org/item/SEDP_2003-2004____A14_0/
[1] M. Ben-Artzi. Global solutions of two-dimensional Navier-Stokes and Euler equations. Arch. Rational Mech. Anal. 128, 329–358, 1994. | MR | Zbl
[2] H. Brezis. Remarks on the preceding paper by M. Ben-Artzi : “Global solutions of two-dimensional Navier-Stokes and Euler equations”. Arch. Rational Mech. Anal., 128, 359–360, 1994. | Zbl
[3] M. Cannone et F. Planchon. Self-similar solutions for Navier-Stokes equations in . Commun. Partial Differ. Equations, 21, 179–193, 1996. | MR | Zbl
[4] E. A. Carlen et M. Loss. Optimal smoothing and decay estimates for viscously damped conservation laws, with applications to the -D Navier-Stokes equation. Duke Math. J., 81, 135–157 (1996), 1995. | MR | Zbl
[5] A. Carpio. Asymptotic behavior for the vorticity equations in dimensions two and three. Comm. Partial Differential Equations, 19, 827–872, 1994. | MR | Zbl
[6] G.-H. Cottet. Équations de Navier-Stokes dans le plan avec tourbillon initial mesure. C. R. Acad. Sci. Paris Sér. I Math., 303, 105–108, 1986. | MR | Zbl
[7] I. Gallagher et Th. Gallay. Uniqueness of the solutions of the Navier-Stokes equation in with measure-valued initial vorticity. Article en préparation, 2004.
[8] Th. Gallay et C. E. Wayne. Invariant manifolds and the long-time asymptotics of the Navier-Stokes and vorticity equations on . Arch. Ration. Mech. Anal., 163, 209–258, 2002. | MR | Zbl
[9] Th. Gallay et C. E. Wayne. Long-time asymptotics of the Navier-Stokes and vorticity equations on . R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 360, 2155–2188, 2002. Recent developments in the mathematical theory of water waves (Oberwolfach, 2001). | MR | Zbl
[10] Th. Gallay. Tourbillon d’Oseen et comportement asymptotique des solutions de l’équation de Navier-Stokes. Séminaire EDP de l’Ecole Polytechnique 2001-2002, exposé V.
[11] Th. Gallay et C.E. Wayne. Global stability of vortex solutions of the two-dimensional Navier-Stokes equation. Prépublication de l’Institut Fourier (2003), disponible sur http://arXiv.org/abs/math/0402449. | Zbl
[12] M.-H. Giga et Y. Giga. Nonlinear partial differential equations : asymptotic behaviour of solutions and self-similar solutions. Ouvrage publié en japonais en 1999, traduction anglaise en préparation, 2004.
[13] Y. Giga et T. Kambe. Large time behavior of the vorticity of two-dimensional viscous flow and its application to vortex formation. Comm. Math. Phys., 117, 549–568, 1988. | MR | Zbl
[14] Y. Giga, T. Miyakawa, et H. Osada. Two-dimensional Navier-Stokes flow with measures as initial vorticity. Arch. Rational Mech. Anal., 104, 223–250, 1988. | MR | Zbl
[15] S. Kamin (Kamenomostskaya). The asymptotic behavior of the solution of the filtration equation. Israel J. Math., 14, 76–87, 1973. | MR | Zbl
[16] T. Kato. The Navier-Stokes equation for an incompressible fluid in with a measure as the initial vorticity. Differential Integral Equations, 7, 949–966, 1994. | MR | Zbl
[17] J. Leray. Etude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique. J. Math. Pures. Appl., 12, 1–82, 1933. | Numdam | Zbl
[18] H. Osada. Diffusion processes with generators of generalized divergence form. J. Math. Kyoto Univ., 27, 597–619, 1987. | MR | Zbl
[19] A. Prochazka et D. I. Pullin. On the two-dimensional stability of the axisymmetric Burgers vortex. Phys. Fluids, 7, 1788–1790, 1995. | MR | Zbl
[20] L. Rossi et J. Graham-Eagle. On the existence of two-dimensional, localized, rotating, self-similar vortical structures. SIAM J. Appl. Math., 62, 2114–2128, 2002. | MR | Zbl