@article{SEDP_2002-2003____A6_0, author = {Dumas, \'Eric}, title = {Existence globale pour les syst\`emes de {Maxwell-Bloch}}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:6}, pages = {1--14}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2002-2003}, zbl = {1081.35112}, mrnumber = {2030701}, language = {fr}, url = {http://www.numdam.org/item/SEDP_2002-2003____A6_0/} }
TY - JOUR AU - Dumas, Éric TI - Existence globale pour les systèmes de Maxwell-Bloch JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:6 PY - 2002-2003 SP - 1 EP - 14 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://www.numdam.org/item/SEDP_2002-2003____A6_0/ LA - fr ID - SEDP_2002-2003____A6_0 ER -
%0 Journal Article %A Dumas, Éric %T Existence globale pour les systèmes de Maxwell-Bloch %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:6 %D 2002-2003 %P 1-14 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://www.numdam.org/item/SEDP_2002-2003____A6_0/ %G fr %F SEDP_2002-2003____A6_0
Dumas, Éric. Existence globale pour les systèmes de Maxwell-Bloch. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2002-2003), Exposé no. 6, 14 p. http://www.numdam.org/item/SEDP_2002-2003____A6_0/
[1] B. Bidégaray, A. Bourgeade and D. Reignier. Introducing physical relaxation terms in Bloch equations. Journal of Computational Physics, 170, 603-613, 2001. | MR | Zbl
[2] P. Donnat and J. Rauch. Global solvability of the Maxwell-Bloch equations from nonlinear optics. Arch. Ration. Mech. Anal., 136(3), 291-303, 1996. | MR | Zbl
[3] P. Gérard. Microlocal defect measures. Communications in Partial Differential Equations, 16, 1761–1794, 1991. | MR | Zbl
[4] J. Ginibre and G. Velo. Generalized Strichartz inequalities for the wave equation. Journal of Functional Analysis, 133, no. 1, 50–68, 1995. | MR | Zbl
[5] H. Haddar. Modèles asymptotiques en ferromagnétisme : couches minces et homogénéisation. Thèse INRIA-École Nationale des Ponts et Chaussées, 2000.
[6] J.-L. Joly, G. Métivier, and J. Rauch. Global solutions to Maxwell equations in a ferromagnetic medium. Annales Henri Poincaré, 1, no. 2, 307–340, 2000. | MR | Zbl
[7] H. Lindblad. Counterexamples to local existence for semilinear wave equations. American Journal of Mathematics, 118, no. 1, 1–16, 1996. | MR | Zbl
[8] H. Lindblad and C.D. Sogge. On existence and scattering with minimal regularity for semilinear wave equations. Journal of Functional Analysis, 130, 357–426, 1995. | MR | Zbl
[9] A.C. Newell and J.V. Moloney. Nonlinear optics. Addison-Wesley Publishing Company Advanced Book Program, Redwood City, CA, 1992. | MR
[10] R. Pantell and H. Puthoff. Fundamentals of quantum electronics. Wiley and Sons Inc., N.Y., 1969.
[11] E. Stein. Singular integrals and differentiability properties of functions. Princeton University Press, 1970. | MR | Zbl
[12] L. Tartar. H-measures, a new approach for studying homogeneization, oscillations and concentrations effects in partial differential equations. Proceedings of the Royal Society of Edinburgh, 115(A), 193–230, 1990. | MR | Zbl