@article{SEDP_2001-2002____A7_0, author = {Bachelot, Alain}, title = {Wave {Equation} and {Causality} {Violation}}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:7}, pages = {1--13}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2001-2002}, language = {en}, url = {http://www.numdam.org/item/SEDP_2001-2002____A7_0/} }
TY - JOUR AU - Bachelot, Alain TI - Wave Equation and Causality Violation JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:7 PY - 2001-2002 SP - 1 EP - 13 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://www.numdam.org/item/SEDP_2001-2002____A7_0/ LA - en ID - SEDP_2001-2002____A7_0 ER -
%0 Journal Article %A Bachelot, Alain %T Wave Equation and Causality Violation %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:7 %D 2001-2002 %P 1-13 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://www.numdam.org/item/SEDP_2001-2002____A7_0/ %G en %F SEDP_2001-2002____A7_0
Bachelot, Alain. Wave Equation and Causality Violation. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2001-2002), Exposé no. 7, 13 p. http://www.numdam.org/item/SEDP_2001-2002____A7_0/
[1] A. Bachelot. Global properties of the wave equation on non-globally hyperbolic manifolds. J. Math. Pures Appl., 81: 35–65, 2002. | MR | Zbl
[2] A. Bachelot, A. Motet-Bachelot. Les résonances d’un trou noir de Schwarzschild. Ann. Inst. Henri Poincaré - Physique théorique, 59(1): 3–68, 1993. | Numdam | Zbl
[3] M. Beals, M. Reed. Microlocal regularity theorems for nonsmooth pseudodifferential operators and applications to nonlinear problems. Trans. Amer. Math. Soc., 285(1): 159–184, 1984. | MR | Zbl
[4] J-M. Bony. Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Sup., 14(2): 209–246, 1981. | Numdam | MR | Zbl
[5] Y. Bruhat. Sur la théorie des propagateurs. Ann. di Mat. Pura Appl., 64: 191–228, 1964. | MR | Zbl
[6] Y. Choquet-Bruhat. Hyperbolic partial differential equations on a manifold. Battelle Rencontres, 1967, Benjamin, New York, 84–106, 1968. | MR | Zbl
[7] D. Colton, R. Kress. Inverse Acoustic and Electromagnetic Scattering Theory. Springer-Verlag, second edition 1998. | MR | Zbl
[8] J. Cooper, W. Strauss. Representations of the Scattering Operator for Moving Obstacles. Indiana Univ. Math. J., 28(4): 643–671, 1979. | MR | Zbl
[9] S. Deser, R. Jackiw, G. ’t Hooft. Three dimensional Einstein gravity: Dynamics of flat space. Ann. Phys. (NY), 152: 220–235, 1984.
[10] Y. Fourès, I.E. Segal. Causality and analyticity. Trans. Am. Math. Soc., 78: 385–405, 1955. | MR | Zbl
[11] F. G. Friedlander. The wave equation on a curved space-time. Cambridge University Press, 1975. | MR | Zbl
[12] J. L. Friedman, M.S. Morris. Existence and Uniqueness Theorems for Massless Fields on a Class of Spacetimes with Closed Timelike Curves. Commun. Math. Phys., 186: 495–529, 1997. | MR | Zbl
[13] R. P. Geroch. The domain of dependence. J. Math. Phys., 11: 437–449, 1970. | MR | Zbl
[14] G. W. Gibbons, C.A.R. Herdeiro. Supersymmetric rotating black holes and causality violation. Class. Quantum Grav., 16: 3619–3652, 1999. | MR | Zbl
[15] K. Gödel. An example of a new type of cosmological solution of Einstein’s field equations of gravitation. Rev. Mod. Phys., 21: 447–450, 1949. | Zbl
[16] D. Häfner. Complétude asymptotique pour l’équation des ondes dans une classe d’espaces-temps stationnaires et asymptotiquement plats. Ann. Institut Fourier, 51(3): 779–833, 2001. | Numdam | Zbl
[17] S. W. Hawking. Chronology protection conjecture. Phys. Rev. D, 46(2): 603–611, 1992. | MR
[18] S. W. Hawking, G. F. R. Ellis. The large scale structure of space-time. Cambridge University Press, 1974. | MR | Zbl
[19] L. Hörmander. The Analysis of Linear Partial Differential Operators, I, II, III, IV. Springer Verlag, second printing 1994. | MR
[20] L. Hörmander. A Remark on the Characteristic Cauchy Problem. J. Funct. Anal., 93: 270–277, 1990. | MR | Zbl
[21] T. Ikebe. A Spectral Theory for the reduced Wave Equation with a Complex Refractive Index. Publ. RIMS, Kyoto Univ., 8: 579–606, 1972/73. | MR | Zbl
[22] T. Kato. Perturbation Theory for Linear Operators. Springer Verlag, second edition, 1980. | MR | Zbl
[23] B. S.. Kay. Application of linear hyperbolic PDE to linear quantum fields incurved spacetimes: especially black holes, time machines and a new semi-local vacuum concept. Journées Equations aux dérivées partielles, Exposé IX, Nantes, 2000. | Numdam | MR
[24] R. P. Kerr. Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett., 11: 237–238, 1963. | MR | Zbl
[25] P. Lax, R. Phillips. Scattering Theory. Academic Press, Revised Edition 1989. | MR | Zbl
[26] J. Leray. Hyperbolic differential equations. Princeton University, 1952. | MR
[27] J-L. Lions, E. Magenes. Problèmes aux limites non homogènes et applications I. Dunod, 1968. | Zbl
[28] R. B. Melrose. Geometric Scattering Theory. Cambridge University Press, 1995. | MR | Zbl
[29] A. Papapetrou. Champs gravitationnels à symétrie axiale. Ann. Inst. Henri Poincaré, A4: 83–105, 1966. | Numdam
[30] V. Petkov. Scattering Theory for Hyperbolic Operators. North Holland, 1989. | MR | Zbl
[31] M. Reed, B. Simon. The Scattering of Classical Waves from Inhomogeneous Media. Math. Z., 155: 163–180, 1977. | MR | Zbl
[32] M. Reed, B. Simon. Methods of modern mathematical physics, Vol. II, III, IV. Academic Press, 1975, 1978. | MR
[33] W. J. van Stockum. Gravitational field of a distribution of particles rotating about an axis of symetry. Proc. R. Soc. Edin., 57: 135–154, 1937. | Zbl
[34] F. J. Tipler. Singularities and Causality Violation. Ann. Phys., 108: 1–36, 1977. | MR | Zbl
[35] B. R. Vainberg. Asymptotic Methods in Equations of Mathematical Physics. Gordon and Breach Science Publishers, 1989. | MR | Zbl
[36] M. Visser. Lorentzian Wormholes. Springer Verlag, 1995. | MR
[37] M. Zworski. Poisson formulae for resonances. Séminaire E.D.P., Ecole Polytechnique, Exposé XIII, 1996–1997. | Numdam | MR | Zbl