@article{SEDP_2001-2002____A5_0, author = {Gallay, Thierry}, title = {Tourbillons {d{\textquoteright}Oseen} et comportement asymptotique des solutions de l{\textquoteright}\'equation de {Navier-Stokes}}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:5}, pages = {1--16}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2001-2002}, language = {fr}, url = {http://www.numdam.org/item/SEDP_2001-2002____A5_0/} }
TY - JOUR AU - Gallay, Thierry TI - Tourbillons d’Oseen et comportement asymptotique des solutions de l’équation de Navier-Stokes JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:5 PY - 2001-2002 SP - 1 EP - 16 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://www.numdam.org/item/SEDP_2001-2002____A5_0/ LA - fr ID - SEDP_2001-2002____A5_0 ER -
%0 Journal Article %A Gallay, Thierry %T Tourbillons d’Oseen et comportement asymptotique des solutions de l’équation de Navier-Stokes %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:5 %D 2001-2002 %P 1-16 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://www.numdam.org/item/SEDP_2001-2002____A5_0/ %G fr %F SEDP_2001-2002____A5_0
Gallay, Thierry. Tourbillons d’Oseen et comportement asymptotique des solutions de l’équation de Navier-Stokes. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2001-2002), Exposé no. 5, 16 p. http://www.numdam.org/item/SEDP_2001-2002____A5_0/
[1] H. Beirão da Veiga. Existence and asymptotic behavior for strong solutions of the Navier-Stokes equations in the whole space. Indiana Univ. Math. J., 36(1) :149–166, 1987. | MR | Zbl
[2] M. Ben-Artzi. Global solutions of two-dimensional Navier-Stokes and Euler equations. Arch. Rational Mech. Anal., 128(4) :329–358, 1994. | MR | Zbl
[3] L. Brandolese. Localisation, oscillations et comportement asymptotique pour les équations de Navier-Stokes. Thèse de l’E.N.S. Cachan, 2001.
[4] L. Brandolese. On the localization of symmetric and asymmetric solutions of the Navier-Stokes equations in . C. R. Acad. Sci. Paris Sér. I Math., 332(2) :125–130, 2001. | MR | Zbl
[5] Marco Cannone. Ondelettes, paraproduits et Navier-Stokes. Diderot Editeur, Paris, 1995. | MR | Zbl
[6] I. Gallagher, D. Iftimie, and F. Planchon. Asymptotics and stability for global solutions to the Navier-Stokes equations. Preprint, 2002.
[7] Th. Gallay and C.E. Wayne. Invariant manifolds and the long-time asymptotics of the Navier-Stokes and vorticity equations on . To appear in Arch. Rat. Mech. Anal., 2002. | MR | Zbl
[8] Th. Gallay and C.E. Wayne. Long-time asymptotics of the Navier-Stokes and vorticity equations on . To appear in the Phil. Trans. Roy. Soc. London, 2002. | MR | Zbl
[9] Th. Gallay and C.E. Wayne. Global stability of vortex solutions of the two-dimensional Navier-Stokes equation. In preparation. | Zbl
[10] Y. Giga, T. Miyakawa, and H. Osada. Two-dimensional Navier-Stokes flow with measures as initial vorticity. Arch. Rational Mech. Anal., 104(3) :223–250, 1988. | MR | Zbl
[11] R. Kajikiya and T. Miyakawa. On decay of weak solutions of the Navier-Stokes equations in . Math. Z., 192(1) :135–148, 1986. | MR | Zbl
[12] T. Kato. Strong -solutions of the Navier-Stokes equation in , with applications to weak solutions. Math. Z., 187(4) :471–480, 1984. | MR | Zbl
[13] T. Kato. The Navier-Stokes equation for an incompressible fluid in with a measure as the initial vorticity. Differential Integral Equations, 7(3-4) :949–966, 1994. | MR | Zbl
[14] J. Leray. Sur le mouvement d’un liquide visqueux remplissant l’espace. Acta Mathematica, 63 :193–248, 1934.
[15] K. Masuda. Weak solutions of Navier-Stokes equations. Tohoku Math. J. (2), 36(4) :623–646, 1984. | MR | Zbl
[16] T. Miyakawa and M. Schonbek. On optimal decay rates for weak solutions to the Navier-Stokes equations in . In Proceedings of Partial Differential Equations and Applications (Olomouc, 1999), volume 126, pages 443–455, 2001. | MR | Zbl
[17] A. Prochazka and D. Pullin. On the two-dimensional stability of the axisymmetric burgers vortex. Phys. Fluids, 7 :1788–1790, 1995. | MR | Zbl
[18] M. Schonbek. decay for weak solutions of the Navier- Stokes equations. Arch. Rational Mech. Anal., 88(3) :209–222, 1985. | MR | Zbl
[19] M. Schonbek. Lower bounds of rates of decay for solutions to the Navier-Stokes equations. J. Amer. Math. Soc., 4(3) :423–449, 1991. | MR | Zbl
[20] M. Schonbek. On decay of solutions to the Navier-Stokes equations. In Applied nonlinear analysis, pages 505–512. Kluwer/Plenum, New York, 1999. | MR | Zbl
[21] M. Wiegner. Decay results for weak solutions of the Navier-Stokes equations on . J. Lond. Math. Soc., II. Ser., 35 :303–313, 1987. | MR | Zbl