Existence de solutions explosives dans l’espace d’énergie pour l’équation de Korteweg–de Vries généralisée critique
Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2001-2002), Exposé no. 22, 9 p.
@article{SEDP_2001-2002____A22_0,
     author = {Martel, Yvan and Merle, Frank},
     title = {Existence de solutions explosives dans l{\textquoteright}espace d{\textquoteright}\'energie  pour l{\textquoteright}\'equation de {Korteweg{\textendash}de} {Vries} g\'en\'eralis\'ee critique},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"},
     note = {talk:22},
     pages = {1--9},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2001-2002},
     language = {en},
     url = {http://www.numdam.org/item/SEDP_2001-2002____A22_0/}
}
TY  - JOUR
AU  - Martel, Yvan
AU  - Merle, Frank
TI  - Existence de solutions explosives dans l’espace d’énergie  pour l’équation de Korteweg–de Vries généralisée critique
JO  - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
N1  - talk:22
PY  - 2001-2002
SP  - 1
EP  - 9
PB  - Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://www.numdam.org/item/SEDP_2001-2002____A22_0/
LA  - en
ID  - SEDP_2001-2002____A22_0
ER  - 
%0 Journal Article
%A Martel, Yvan
%A Merle, Frank
%T Existence de solutions explosives dans l’espace d’énergie  pour l’équation de Korteweg–de Vries généralisée critique
%J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
%Z talk:22
%D 2001-2002
%P 1-9
%I Centre de mathématiques Laurent Schwartz, École polytechnique
%U http://www.numdam.org/item/SEDP_2001-2002____A22_0/
%G en
%F SEDP_2001-2002____A22_0
Martel, Yvan; Merle, Frank. Existence de solutions explosives dans l’espace d’énergie  pour l’équation de Korteweg–de Vries généralisée critique. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2001-2002), Exposé no. 22, 9 p. http://www.numdam.org/item/SEDP_2001-2002____A22_0/

[1] J.L. Bona, V.A. Dougalis, O.A. Karakashian and W.R. McKinney, Conservative, high order numerical schemes, Phil. Trans. Roy. Soc. London Ser. A. 351, (1995) 107—164. | MR | Zbl

[2] D.B. Dix and W.R. McKinney, Numerical computations of self-similar blow up solutions of the generalized Korteweg-de Vries equation, Diff. Int. Eq., 11 (1998), 679—723. | MR | Zbl

[3] W. Eckhaus and P. Schuur, The emergence of solitons of the Korteweg–de Vries equation from arbitrary initial conditions, Math. Meth. Appl. Sci. 5 (1983), 97—116. | MR | Zbl

[4] C.E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle, Comm. Pure Appl. Math. 46, (1993) 527—620. | MR | Zbl

[5] D.J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag. 539, (1895) 422—443.

[6] G.L. Lamb Jr., Element of soliton theory (John Wiley & Sons, New York 1980). | MR | Zbl

[7] P. D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21, (1968) 467—490. | MR | Zbl

[8] Y. Martel and F. Merle, A Liouville Theorem for the critical generalized Korteweg–de Vries equation, J. Math. Pures Appl. 79, (2000) 339—425. | MR | Zbl

[9] Y. Martel and F. Merle, Asymptotic stability of solitons for subcritical generalized KdV equations, Arch. Ration. Mech. Anal. 157, (2001) 219—254. | MR | Zbl

[10] Y. Martel and F. Merle, Stability of the blow up profile and lower bounds on the blow up rate for the critical generalized KdV equation, Ann. of Math. 155, (2002) 235—280. | MR | Zbl

[11] Y. Martel and F. Merle, Blow up in finite time and dynamics of blow up solutions for the L 2 -critical generalized KdV equation, à paraître dans J. Amer. Math. Soc. | MR | Zbl

[12] Y. Martel, F. Merle and Tai–Peng Tsai, Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations, préprint. | MR

[13] F. Merle, Blow-up phenomena for critical nonlinear Schrödinger and Zakharov equations, Proceeding of the International Congress of Mathematicians, (Berlin, 1998), Doc. Math. J. DMV. | MR | Zbl

[14] F. Merle, Existence of blow-up solutions in the energy space for the critical generalized KdV equation, J. Amer. Math. Soc. 14, (2001) 555—578. | MR | Zbl

[15] F. Merle and P. Raphael, Blowup dynamic and upper bound on the blowup rate for the critical nonlinear Schrödinger equation, préprint.

[16] R.M. Miura, The Korteweg–de Vries equation: a survey of results, SIAM Review 18, (1976) 412—459. | MR | Zbl

[17] M.I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1983), 567—576. | MR | Zbl