@article{SEDP_2000-2001____A9_0, author = {Rigot, S\'everine}, title = {Ensembles quasiminimaux pour le p\'erim\`etre avec contrainte de volume et rectificabilit\'e uniforme}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:9}, pages = {1--13}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2000-2001}, zbl = {1067.49027}, mrnumber = {1860681}, language = {fr}, url = {http://www.numdam.org/item/SEDP_2000-2001____A9_0/} }
TY - JOUR AU - Rigot, Séverine TI - Ensembles quasiminimaux pour le périmètre avec contrainte de volume et rectificabilité uniforme JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:9 PY - 2000-2001 SP - 1 EP - 13 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://www.numdam.org/item/SEDP_2000-2001____A9_0/ LA - fr ID - SEDP_2000-2001____A9_0 ER -
%0 Journal Article %A Rigot, Séverine %T Ensembles quasiminimaux pour le périmètre avec contrainte de volume et rectificabilité uniforme %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:9 %D 2000-2001 %P 1-13 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://www.numdam.org/item/SEDP_2000-2001____A9_0/ %G fr %F SEDP_2000-2001____A9_0
Rigot, Séverine. Ensembles quasiminimaux pour le périmètre avec contrainte de volume et rectificabilité uniforme. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2000-2001), Exposé no. 9, 13 p. http://www.numdam.org/item/SEDP_2000-2001____A9_0/
[1] Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Mem. Amer. Math. Soc., Volume 4 (1976) no. 165, pp. viii+199pp | MR | Zbl
[2] Partial regularity for quasi minimizers of perimeter, Ricerche Mat., Volume 48 (1999), pp. 167-186 | MR | Zbl
[3] Analysis of and on uniformly rectifiable sets, Mathematical Surveys and Monographs, 38, Amer. Math. Soc., 1993 | MR | Zbl
[4] Quantitative rectifiability and Lipschitz mappings, Trans. Amer. Math. Soc., Volume 337 (1993) no. 2, pp. 855-889 | MR | Zbl
[5] Uniform rectifiability and quasiminimizing sets of arbitrary codimension, Mem. Amer. Math. Soc., Volume 144 (2000) no. 687, pp. viii+132 pp | MR | Zbl
[6] Frontiere orientate di misura minima (1960-1961) (Sem. Mat. Scuola Norm. Sup. Pisa)
[7] The singular sets of area minimizing rectifiable currents with codimension one and of area minimizing flat chains modulo two arbitrary codimension, Bull. Amer. Math. Soc., Volume 76 (1970), pp. 767-771 | MR | Zbl
[8] Minimal surfaces and functions of bounded variation, Monographs in Mathematics, 80, Birkhäuser, 1984 | MR | Zbl
[9] On the regularity of boundaries of sets minimizing perimeter with a volume constraint, Indiana Univ. Math. J., Volume 32 (1983) no. 1, pp. 25-37 | MR | Zbl
[10] Dynamics of labyrinthine pattern formation in magnetic fluids : a mean-field theory, Arch. Rational Mech. Anal., Volume 141 (1998) no. 1, pp. 63-103 | MR | Zbl
[11] Ensembles quasi-minimaux avec contrainte de volume et rectifiabilité uniforme, Mém. Soc. Math. Fr. (N.S.), Volume 82 (2000), pp. v+104pp | Numdam | MR | Zbl
[12] Uniform partial regularity of quasi minimizers for the perimeter, Cal. Var. Partial Differential Equations, Volume 10 (2000) no. 4, pp. 389-406 | MR | Zbl
[13] Regularity results for almost minimal oriented hypersurfaces in , Quaderni Del Dipartimento Di Matematica Dell’ Universita’ Di Lecce, 1984
[14] Weakly differentiable functions, Graduate Texts in Mathematics, 120, Springer-Verlag, 1989 | MR | Zbl