@article{SEDP_2000-2001____A6_0, author = {Lindblad, Hans}, title = {The motion of the free surface of a liquid}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:6}, pages = {1--8}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2000-2001}, zbl = {1063.35523}, mrnumber = {1860678}, language = {en}, url = {http://www.numdam.org/item/SEDP_2000-2001____A6_0/} }
TY - JOUR AU - Lindblad, Hans TI - The motion of the free surface of a liquid JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:6 PY - 2000-2001 SP - 1 EP - 8 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://www.numdam.org/item/SEDP_2000-2001____A6_0/ LA - en ID - SEDP_2000-2001____A6_0 ER -
%0 Journal Article %A Lindblad, Hans %T The motion of the free surface of a liquid %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:6 %D 2000-2001 %P 1-8 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://www.numdam.org/item/SEDP_2000-2001____A6_0/ %G en %F SEDP_2000-2001____A6_0
Lindblad, Hans. The motion of the free surface of a liquid. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2000-2001), Exposé no. 6, 8 p. http://www.numdam.org/item/SEDP_2000-2001____A6_0/
[BG] Remarks on the abstract form of nonlinear Cauchy-Kovalevsky theorems, Comm. Part. Diff. Eq., Volume 2 (1977), pp. 1151-1162 | MR | Zbl
[C1] Self-Gravitating Relativistic Fluids: A Two-Phase Model, Arch. Rational Mech. Anal., Volume 2 (1995), pp. 343-400 | MR | Zbl
[C2] Oral Communication (August 95)
[CK] The Nonlineear Stability of the Minkowski space-time, Princeton Univ. Press, 1993 | MR | Zbl
[CL] On the motion of the free surface of a liquid., Comm. Pure Appl. Math., Volume 53 (2000), pp. 1536-1602 | MR | Zbl
[E1] The equations of motion of a perfect fluid with free boundary are not well posed., Comm. Part. Diff. Eq., Volume 10 (1987), pp. 1175-1201 | MR | Zbl
[E2] Oral communication (November 1997)
[L1] Well posedness for the linearized motion of the free surface of a liquid, preprint (Jan 2001)
[L2] Well posedness for the motion of the free surface of a liquid, in preparation
[Na] The Cauchy-Poisson Problem (in Russian), Dynamika Splosh. Sredy 18 (1974), pp. 104-210 | MR
[Ni] A note on a theorem of Nirenberg, J. Diff. Geometry, Volume 12 (1977), pp. 629-633 | MR | Zbl
[W1] Well-posedness in Sobolev spaces of the full water wave problem in 2-D, Invent. Math., Volume 130 (1997), pp. 39-72 | MR | Zbl
[W2] Well-posedness in Sobolev spaces of the full water wave problem in 3-D, J. Amer. Math. Soc., Volume 12 (1999), pp. 445-495 | MR | Zbl
[Y] Gravity Waves on the Free Surface of an Incompressible Perfect Fluid, Volume 18 (1982), pp. 49-96 | MR