We recount here some preliminary attempts to devise quantum analogues of certain aspects of Mather’s theory of minimizing measures [M1-2, M-F], augmented by the PDE theory from Fathi [F1,2] and from [E-G1]. This earlier work provides us with a Lipschitz continuous function solving the eikonal equation aėȧnd a probability measure solving a related transport equation.
We present some elementary formal identities relating certain quantum states and . We show also how to build out of an approximate solution of the stationary Schrödinger eigenvalue problem, although the error estimates for this construction are not very good.
@article{SEDP_2000-2001____A23_0, author = {Evans, Lawrence C.}, title = {Effective {Hamiltonians} and {Quantum} {States}}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:23}, pages = {1--13}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2000-2001}, zbl = {1055.81524}, mrnumber = {1860693}, language = {en}, url = {http://www.numdam.org/item/SEDP_2000-2001____A23_0/} }
TY - JOUR AU - Evans, Lawrence C. TI - Effective Hamiltonians and Quantum States JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:23 PY - 2000-2001 SP - 1 EP - 13 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://www.numdam.org/item/SEDP_2000-2001____A23_0/ LA - en ID - SEDP_2000-2001____A23_0 ER -
%0 Journal Article %A Evans, Lawrence C. %T Effective Hamiltonians and Quantum States %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:23 %D 2000-2001 %P 1-13 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://www.numdam.org/item/SEDP_2000-2001____A23_0/ %G en %F SEDP_2000-2001____A23_0
Evans, Lawrence C. Effective Hamiltonians and Quantum States. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2000-2001), Exposé no. 23, 13 p. http://www.numdam.org/item/SEDP_2000-2001____A23_0/
[C-I] Global minimizers of autonomous Lagrangians
[E-G1] Effective Hamiltonians and averaging for Hamiltonian dynamics I, Archive Rational Mech and Analysis, Volume 157 (2001), pp. 1-33 | MR | Zbl
[E-G2] Effective Hamiltonians and averaging for Hamiltonian dynamics II | MR | Zbl
[EW] Aubry–Mather theory and periodic solutions of the forced Burgers equation, Comm Pure and Appl Math, Volume 52 (1999), pp. 811-828 | MR | Zbl
[F1] Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens, C. R. Acad. Sci. Paris Sér. I Math., Volume 324 (1997), pp. 1043-1046 | MR | Zbl
[F2] Weak KAM theory in Lagrangian Dynamics, Preliminary Version (2001)
[G1] Hamilton–Jacobi Equations, Viscosity Solutions and Asymptotics of Hamiltonian Systems, University of California, Berkeley (2000) (Ph. D. Thesis)
[G2] Viscosity solutions of Hamilton-Jacobi equations and asymptotics for Hamiltonian systems | MR | Zbl
[G3] Regularity theory for Hamilton-Jacobi equations | Zbl
[L-P-V] Homogenization of Hamilton–Jacobi equations
[M-F] Action minimizing orbits in Hamiltonian systems, Transition to Chaos in Classical and Quantum Mechanics (Lecture Notes in Math.), Sringer, 1994 no. 1589 | MR | Zbl
[M1] Minimal measures, Comment. Math Helvetici, Volume 64 (1989), pp. 375-394 | MR | Zbl
[M2] Action minimizing invariant measures for positive definite Lagrangian systems, Math. Zeitschrift, Volume 207 (1991), pp. 169-207 | MR | Zbl