@article{SEDP_2000-2001____A21_0, author = {Lafitte, Olivier}, title = {Sur la phase lin\'eaire de l{\textquoteright}instabilit\'e de {Rayleigh-Taylor}}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:21}, pages = {1--20}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2000-2001}, zbl = {02124170}, language = {fr}, url = {http://www.numdam.org/item/SEDP_2000-2001____A21_0/} }
TY - JOUR AU - Lafitte, Olivier TI - Sur la phase linéaire de l’instabilité de Rayleigh-Taylor JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:21 PY - 2000-2001 SP - 1 EP - 20 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://www.numdam.org/item/SEDP_2000-2001____A21_0/ LA - fr ID - SEDP_2000-2001____A21_0 ER -
%0 Journal Article %A Lafitte, Olivier %T Sur la phase linéaire de l’instabilité de Rayleigh-Taylor %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:21 %D 2000-2001 %P 1-20 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://www.numdam.org/item/SEDP_2000-2001____A21_0/ %G fr %F SEDP_2000-2001____A21_0
Lafitte, Olivier. Sur la phase linéaire de l’instabilité de Rayleigh-Taylor. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2000-2001), Exposé no. 21, 20 p. http://www.numdam.org/item/SEDP_2000-2001____A21_0/
[1] S. Benzoni-Gavage, D. Serre, K. Zumbrun Alternate Evans functions and visous shock waves à paraitre | Zbl
[2] R. Betti, V. Goncharov Multiple cut-off wave numbers of the ablative Rayleigh-Taylor instability Phys. Rev. E 50 (5) 3968-3972, 1994.
[3] S. Chandrasekhar Hydrodynamic and hydromagnetic stability Oxford University Press, Oxford, 1961 | MR | Zbl
[4] C. Cherfils, O. Lafitte Analytic solutions of the Rayleigh equation for linear density profiles Phys. Rev E 62 2967-2970, 2000.
[5] C. Cherfils-Clerouin, O. Lafitte, P.A. Raviart Asymptotic results for the linear stage of the Rayleigh-Taylor instability à paraitre dans Mathematical Fluid Mechanics, Birkhauser, 2001. | MR | Zbl
[6] K.A. Gardner, K. Zumbrun The gap lemma and geometric criteria for instability of viscous shock profiles Comm. Pure Appl. Math., 51 (7) : 797-855. | MR | Zbl
[7] V. Goncharov, R. Betti et al, Self consistent stability analysis of ablation fronts with large Froude numbers Phys. Plasmas 3 (4), 1401-1414, 1996 | MR
[8] V. Goncharov, R. Betti et al Self consistent stability analysis of ablation fronts with small Froude numbers Phys. Plasmas 3 (12), 4665-4676, 1996
[9] V. Goncharov Self consistent stability analysis of ablation fronts in Inertial Confinement Fusion PhD Thesis, Univ. of Rochester, N.Y., 1998
[10] B. Helffer, O. Lafitte On spectral questions around the Rayleigh equation en préparation
[11] B. Helffer, J. Sjostrand Multiple wells in the semiclassical limit I Comm. in P. D. E. 9 (4) (1984) 337-408. | MR | Zbl
[12] R.E. Kidder Laser driven compression of hollow shells : power requirements and stability limitations Nuclear Fusion 16 (1) 3-14, 1976
[13] H.J. Kull Theory of the Rayleigh-Taylor instability Physics Reports (Rev. Sec. of Phys. Letters) 206 (5) 197-325, North-Holland, 1991
[14] O. Lafitte Analysis of the discrete spectrum of the Rayleigh equation : application to the linear Rayleigh-Taylor instability Preprint du CMAT 2000-24 (Ecole Polytechnique, Palaiseau 2000).
[15] K. O. Mikaelian Lasnex simulations of the classical and laser-driven Rayleigh-Taylor instability Phys. Rev. A, 42 (8) 4944-4951, 1990
[16] K. O. Mikaelian Connection between the Rayleigh and the Schrödinger equations Phys. Rev. E, 53 (4) 1996. | MR
[17] A.R. Piriz, J. Sanz, L.F. Ibanez Rayleigh-Taylor instability of steady ablation fronts : the discontinuity model revisited Phys. Plasmas 4 1117 (1997) | MR
[18] Lord J.W.S. Rayleigh Investigation of the Character of the Equilibrium of an Incompressible Heavy Fluid of Variable Density Proc. London Math. Soc. 14, 170-177, 1883
[19] L. Spitzer, jr, R. Haerm Transport phenomena in a completely ionized gas Phys. Rev II Ser. 89, 977-981 (1953) | Zbl
[20] H. Takabe, K. Mima, L. Montierth, R. L. Morse Self-consistent growth rate of the Rayleigh-Taylor instability in an ablatively accelerating plasma Phys. Fluids 28 (2) 3676-3682, 1985. | MR | Zbl
[21] G. Taylor The instability of liquid surfaces when accelerated in a direction perpendicular to their planes Proc. Roy. Soc. London Ser. A 201 (1950) 192-196. | MR | Zbl