@article{SEDP_1999-2000____A10_0, author = {Tataru, Daniel}, title = {Global {Strichartz} estimates for variable coefficient second order hyperbolic operators}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:10}, pages = {1--15}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {1999-2000}, zbl = {1059.35022}, mrnumber = {1813173}, language = {en}, url = {http://www.numdam.org/item/SEDP_1999-2000____A10_0/} }
TY - JOUR AU - Tataru, Daniel TI - Global Strichartz estimates for variable coefficient second order hyperbolic operators JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:10 PY - 1999-2000 SP - 1 EP - 15 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://www.numdam.org/item/SEDP_1999-2000____A10_0/ LA - en ID - SEDP_1999-2000____A10_0 ER -
%0 Journal Article %A Tataru, Daniel %T Global Strichartz estimates for variable coefficient second order hyperbolic operators %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:10 %D 1999-2000 %P 1-15 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://www.numdam.org/item/SEDP_1999-2000____A10_0/ %G en %F SEDP_1999-2000____A10_0
Tataru, Daniel. Global Strichartz estimates for variable coefficient second order hyperbolic operators. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1999-2000), Exposé no. 10, 15 p. http://www.numdam.org/item/SEDP_1999-2000____A10_0/
[1] Philip Brenner. On estimates for the wave-equation. Math. Z., 145(3):251–254, 1975. | MR | Zbl
[2] Jean-Marc Delort. F.B.I. transformation. Springer-Verlag, Berlin, 1992. Second microlocalization and semilinear caustics. | MR | Zbl
[3] J. Ginibre and G. Velo. Generalized Strichartz inequalities for the wave equation. J. Funct. Anal., 133(1):50–68, 1995. | MR | Zbl
[4] Markus Keel and Terence Tao. Endpoint Strichartz estimates. Amer. J. Math., 120(5):955–980, 1998. | MR | Zbl
[5] Gerd Mockenhaupt, Andreas Seeger, and Christopher D. Sogge. Local smoothing of Fourier integral operators and Carleson-Sjölin estimates. J. Amer. Math. Soc., 6(1):65–130, 1993. | MR | Zbl
[6] Hart F. Smith. A parametrix construction for wave equations with coefficients. Ann. Inst. Fourier (Grenoble), 48(3):797–835, 1998. | Numdam | MR | Zbl
[7] Hart F. Smith and Christopher D. Sogge. On Strichartz and eigenfunction estimates for low regularity metrics. Math. Res. Lett., 1(6):729–737, 1994. | MR | Zbl
[8] Robert S. Strichartz. Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J., 44(3):705–714, 1977. | MR | Zbl
[9] Daniel Tataru. Strichartz estimates for operators with nonsmooth coefficients iii. preprint, +/http://www.math.nwu/ tataru/nlw+. | Zbl
[10] Daniel Tataru. Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients ii. preprint, +/http://www.math.nwu/ tataru/nlw+. | MR | Zbl
[11] Daniel Tataru. Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation. Amer. J. Math., 122(2):349–376, 2000. | MR | Zbl