Global Strichartz estimates for variable coefficient second order hyperbolic operators
Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1999-2000), Exposé no. 10, 15 p.
Tataru, Daniel 1

1 Department of Mathematics, Northwestern University
@article{SEDP_1999-2000____A10_0,
     author = {Tataru, Daniel},
     title = {Global {Strichartz} estimates for variable coefficient second order hyperbolic operators},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"},
     note = {talk:10},
     pages = {1--15},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {1999-2000},
     zbl = {1059.35022},
     mrnumber = {1813173},
     language = {en},
     url = {http://www.numdam.org/item/SEDP_1999-2000____A10_0/}
}
TY  - JOUR
AU  - Tataru, Daniel
TI  - Global Strichartz estimates for variable coefficient second order hyperbolic operators
JO  - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
N1  - talk:10
PY  - 1999-2000
SP  - 1
EP  - 15
PB  - Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://www.numdam.org/item/SEDP_1999-2000____A10_0/
LA  - en
ID  - SEDP_1999-2000____A10_0
ER  - 
%0 Journal Article
%A Tataru, Daniel
%T Global Strichartz estimates for variable coefficient second order hyperbolic operators
%J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
%Z talk:10
%D 1999-2000
%P 1-15
%I Centre de mathématiques Laurent Schwartz, École polytechnique
%U http://www.numdam.org/item/SEDP_1999-2000____A10_0/
%G en
%F SEDP_1999-2000____A10_0
Tataru, Daniel. Global Strichartz estimates for variable coefficient second order hyperbolic operators. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1999-2000), Exposé no. 10, 15 p. http://www.numdam.org/item/SEDP_1999-2000____A10_0/

[1] Philip Brenner. On L p -L p estimates for the wave-equation. Math. Z., 145(3):251–254, 1975. | MR | Zbl

[2] Jean-Marc Delort. F.B.I. transformation. Springer-Verlag, Berlin, 1992. Second microlocalization and semilinear caustics. | MR | Zbl

[3] J. Ginibre and G. Velo. Generalized Strichartz inequalities for the wave equation. J. Funct. Anal., 133(1):50–68, 1995. | MR | Zbl

[4] Markus Keel and Terence Tao. Endpoint Strichartz estimates. Amer. J. Math., 120(5):955–980, 1998. | MR | Zbl

[5] Gerd Mockenhaupt, Andreas Seeger, and Christopher D. Sogge. Local smoothing of Fourier integral operators and Carleson-Sjölin estimates. J. Amer. Math. Soc., 6(1):65–130, 1993. | MR | Zbl

[6] Hart F. Smith. A parametrix construction for wave equations with C 1,1 coefficients. Ann. Inst. Fourier (Grenoble), 48(3):797–835, 1998. | Numdam | MR | Zbl

[7] Hart F. Smith and Christopher D. Sogge. On Strichartz and eigenfunction estimates for low regularity metrics. Math. Res. Lett., 1(6):729–737, 1994. | MR | Zbl

[8] Robert S. Strichartz. Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J., 44(3):705–714, 1977. | MR | Zbl

[9] Daniel Tataru. Strichartz estimates for operators with nonsmooth coefficients iii. preprint, +/http://www.math.nwu/ tataru/nlw+. | Zbl

[10] Daniel Tataru. Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients ii. preprint, +/http://www.math.nwu/ tataru/nlw+. | MR | Zbl

[11] Daniel Tataru. Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation. Amer. J. Math., 122(2):349–376, 2000. | MR | Zbl