Champs de spin 3/2 et relativité générale
Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1998-1999), Exposé no. 6, 14 p.
Nicolas, Jean-Philippe 1

1 CMAT, Ecole Polytechnique, 91128 Palaiseau Cedex ou MAB, Université Bordeaux 1, 351 cours de la Libération, 33405 Talence Cedex
@article{SEDP_1998-1999____A6_0,
     author = {Nicolas, Jean-Philippe},
     title = {Champs de spin $\mathbf{3/2}$ et relativit\'e g\'en\'erale},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"},
     note = {talk:6},
     pages = {1--14},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {1998-1999},
     zbl = {1057.83518},
     mrnumber = {1721324},
     language = {fr},
     url = {http://www.numdam.org/item/SEDP_1998-1999____A6_0/}
}
TY  - JOUR
AU  - Nicolas, Jean-Philippe
TI  - Champs de spin $\mathbf{3/2}$ et relativité générale
JO  - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
N1  - talk:6
PY  - 1998-1999
SP  - 1
EP  - 14
PB  - Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://www.numdam.org/item/SEDP_1998-1999____A6_0/
LA  - fr
ID  - SEDP_1998-1999____A6_0
ER  - 
%0 Journal Article
%A Nicolas, Jean-Philippe
%T Champs de spin $\mathbf{3/2}$ et relativité générale
%J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
%Z talk:6
%D 1998-1999
%P 1-14
%I Centre de mathématiques Laurent Schwartz, École polytechnique
%U http://www.numdam.org/item/SEDP_1998-1999____A6_0/
%G fr
%F SEDP_1998-1999____A6_0
Nicolas, Jean-Philippe. Champs de spin $\mathbf{3/2}$ et relativité générale. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1998-1999), Exposé no. 6, 14 p. http://www.numdam.org/item/SEDP_1998-1999____A6_0/

[1] H.A. Buchdahl, (1958) On the compatibility of relativistic wave equations for particles of higher spin in the presence of a gravitational field, Nuovo Cim. 10, pp. 96-103. | MR | Zbl

[2] F. Cagnac, Y. Choquet-Bruhat, N. Noutchegueme, (1987) Solutions of the Einstein equations with data at past infinity, 7th Italian conference on general relativity and gravitational physics (Rapallo, 1986), 35–54, World Sci. Publishing, Singapore. | MR

[3] Y. Choquet-Bruhat, (1985), Causalité des théories de supergravité, Société Mathématique de France, Astérisque, Hors Série, p. 79-93. | Numdam | MR | Zbl

[4] Y. Choquet-Bruhat, D. Christodoulou, (1981) Elliptic problems in H s,δ spaces on manifolds which are euclidian at infinity, Acta Math., 146, pp. 129-150. | MR | Zbl

[5] Y. Choquet-Bruhat, D. Christodoulou, M. Francaviglia, (1979) On the wave equation in curved spacetime, Ann. Inst. henri Poincaré, 31, 4, p. 399-414. | Numdam | MR | Zbl

[6] D. Christodoulou, S. Klainerman, (1993) The global nonlinear stability of the Minkowski space, Princeton Mathematical series 41, Princeton University Press. | MR | Zbl

[7] P.T. Chruściel, (1993) On completeness of orbits of Killing vector fields, Classical Quantum Gravity 10, No.10, 2091-2101. | MR | Zbl

[8] P.A.M. Dirac, (1928) The quantum theory of the electron, Proc. Roy. Soc., Part I  : A117, p. 610-624, Part II  : A118, p. 351-361.

[9] P.A.M. Dirac, (1936) Relativistic wave equations, Proc. Roy. Soc. A155, pp. 447-449. | Zbl

[10] M. Fierz and W. Pauli, (1939) On relativistic wave equations for particles of arbitrary spin in an electromagnetic field, Proc. Roy. Soc. A173, pp. 211-232. | MR | Zbl

[11] R.P. Geroch, (1968) Spinor structure of space-times in general relativity, Part I : J. Math. Phys. 9, Part II : J. Math. Phys. 11. | Zbl

[12] R.P. Geroch, (1970) The domain of dependence, J. Math. Phys., 11, pp. 437-439. | MR | Zbl

[13] T. Kato, (1970) Linear equations of “hyperbolic” type, Part I : J. Fac. Sc. Univ. Tokyo, 17, p. 241-258, Part II : J. Math. Soc. Japan, 25, p. 648-666. | Zbl

[14] T. Kato, (1975) The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rational Mech. Anal., 58, p. 181-205. | MR | Zbl

[15] L.J. Mason, J.-P. Nicolas, Global results for the Rarita-Schwinger equations and Einstein vacuum equations, à paraître dans Proc. London Math. Soc. | Zbl

[16] L.J. Mason and R. Penrose, (1994) Spin 3/2 fields and local twistors, Twistor Newsletter 37, p. 1-6.

[17] J.-P. Nicolas, (1997) Global exterior Cauchy problem for spin 3/2 zero rest-mass fields in the Schwarzchild space-time, Commun. in PDE, 22, 3&4, 465-502. | MR | Zbl

[18] T. Parker, C.H. Taubes, (1982) On Witten’s proof of the positive energy theorem, Comm. Math. Phys., 84, 223-238. | Zbl

[19] R. Penrose, (1965) Zero rest-mass fields including gravitation  : asymptotic behavior, Proc. Roy. Soc. A284, pp. 159-203. | MR | Zbl

[20] R. Penrose, (1991) Twistors as spin 3/2 charges, Gravitation and modern cosmology, Eds. A. Zichichi, N. de Sabbata and N. Sánchez, Plenum Press, New York, pp. 129-137. | MR

[21] R. Penrose, W. Rindler, (1984 & 1986) Spinors and space-time, Vol. I & II, Cambridge monographs on mathematical physics, Cambridge University Press. | Zbl

[22] W. Rarita and J. Schwinger, (1941) On a theory of particles with half-integer spin, Phys. Rev. 60, pp. 61. | Zbl

[23] A. Sen, (1982) Quantum Theory of Spin 3/2 Field in Einstein Spaces, Internat. J. Theoretical Physics, 21, 1, 1-35. | MR

[24] E. Witten, (1981) A new proof of the positive energy theorem, Commun. Math. Physics 80, 381-402. | MR | Zbl