@article{SEDP_1998-1999____A16_0, author = {Masmoudi, Nader}, title = {Couches {d{\textquoteright}Ekman} pour les fluides tournants et la limite du syst\`eme de {Navier-Stokes} vers celui {d{\textquoteright}Euler.}}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:16}, pages = {1--13}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {1998-1999}, zbl = {1087.76580}, language = {fr}, url = {http://www.numdam.org/item/SEDP_1998-1999____A16_0/} }
TY - JOUR AU - Masmoudi, Nader TI - Couches d’Ekman pour les fluides tournants et la limite du système de Navier-Stokes vers celui d’Euler. JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:16 PY - 1998-1999 SP - 1 EP - 13 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://www.numdam.org/item/SEDP_1998-1999____A16_0/ LA - fr ID - SEDP_1998-1999____A16_0 ER -
%0 Journal Article %A Masmoudi, Nader %T Couches d’Ekman pour les fluides tournants et la limite du système de Navier-Stokes vers celui d’Euler. %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:16 %D 1998-1999 %P 1-13 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://www.numdam.org/item/SEDP_1998-1999____A16_0/ %G fr %F SEDP_1998-1999____A16_0
Masmoudi, Nader. Couches d’Ekman pour les fluides tournants et la limite du système de Navier-Stokes vers celui d’Euler.. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1998-1999), Exposé no. 16, 13 p. http://www.numdam.org/item/SEDP_1998-1999____A16_0/
[1] L.Amerio, G.Prouse : Almost-periodic functions ans functional equations. The University Series in Higher Mathematics, Van Nostrand Reinhold Company | MR | Zbl
[2] A. Babin, A. Mahalov, B. Nicolaenko : Global splitting, integrability and regularity of 3D Euler and Navier-Stokes equations for uniformly rotating fluids.European J. Mech. B Fluids 15 (1996), no. 3, 291–300. | MR | Zbl
[3] A. Babin, A. Mahalov, B. Nicolaenko : Regularity and integrability of D Euler and Navier-Stokes equations for rotating fluids. Asymptot. Anal. 15 (1997), no. 2, 103–150. | MR | Zbl
[4] C. Bardos : Existence et unicité de l’équation l’Euler en dimension deux. Journal de Math. Pures et Appliquées 40(1972), 769-790. | Zbl
[5] T. Beale, A. Bourgeois : Validity of the quasigeostrophic model for large scale flow in the atmosphere and ocean, SIAM J. Math. Anal., (), . | MR | Zbl
[6] H.Bohr : Almost Periodic Functions. Chelsea Publishing Company | MR
[7] R.E.Caflisch, M.Sammartino : Zero viscosity limit for analytic solutions of the Navier-Stokes equations on a half-space preprint . | MR
[8] J.-Y. Chemin : A propos d’un problème de pénalisation de type antisymétrique, J. Math. Pures Appl. (9) 76 (1997), no. 9, 739–755. | Zbl
[9] T. Colin, P. Fabrie : Rotating fluid at high Rossby number driven by a surface stress : existence and convergence, preprint, . | MR | Zbl
[10] Colin, P. Fabrie : Équations de Navier-Stokes -D avec force de Coriolis et viscosité verticale évanescente. C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), no. 3, 275–280. | MR | Zbl
[11] B. Desjardins, E. Grenier, Derivation of the quasigeostrophic potential vorticity equations. to appear in Advances in Diff. Equations. | Zbl
[12] P. Embid, A. Majda : Averaging over fast gravity waves for geophysical flows with arbitrary potential vorticity, Comm. Partial Differential Equations, , (1996), . | MR | Zbl
[13] V.W. Ekman : On the influence of the earth’s rotation on ocean currents. Arkiv. Matem., Astr. Fysik, Stockholm () .
[14] I. Gallagher, Un résultat de stabilité pour les solutions faibles des équations des fluides tournants, Notes aux Comptes-Rendus de l’Académie des Sciences de Paris, ( 324), Série 1, 1996, pages 183–186. | Zbl
[15] H.P.Greenspan : The theory of rotating fluids, Cambridge monographs on mechanics and applied mathematics , | Zbl
[16] E. Grenier, Oscillatory perturbations of the Navier Stokes equations. Journal de Maths Pures et Appl. 9 76 (1997), no. 6, p. 477-498. | MR | Zbl
[17] E. Grenier, N.Masmoudi : Ekman layers of rotating fluids, the case of well prepared initial data, Comm. Partial Differential Equations , 22(5-6),(1997) 953-975 | MR | Zbl
[18] T.Kato : Remarks on zero viscosity limit for nonstationary Navier-Stokes flows with boundary. | Zbl
[19] T.Kato : Non-stationary flows of viscous and ideal fluids in , J.Functional Analysis 9 (1972), 296-305. | MR | Zbl
[20] J. Leray, Essai sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Matematica, 63, 1933, pages 193–248.
[21] J.-L. Lions, R. Temam, S. Wang : Modèles et analyse mathématiques du système Océan/Atmosphère C.R.Acad.Sci.Paris Sér. I Math , C.R.Acad.Sci.Paris Sér. I Math C.R.Acad.Sci.Paris Sér. I Math .
[22] J.-L. Lions, R. Temam et S. Wang, New formulations of the primitive equations of the atmosphere and applications, Nonlinearity, 5, 1992, pages 237–288. | MR | Zbl
[23] J.-L. Lions, R. Temam et S. Wang, Geostrophic asympotics of the primitive equations of the atmosphere, Topological Methods in Non Linear Analysis, 4, 1994, pages 1–35. | MR | Zbl
[24] P.L. Lions, Mathematical Topics in Fluid Dynamics, Vol. Incompressible Models, Oxford University Press . | MR | Zbl
[25] P.L. Lions, N. Masmoudi, Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl. 77 (1998), p. 585-627. | MR | Zbl
[26] A. Majda, T. Esteban :A two-dimensional model for quasigeostrophic flow : comparison with the two-dimensional Euler flow. Nonlinear phenomena in ocean dynamics (Los Alamos, NM, 1995). Phys. D 98 (1996), no. 2-4, 515–522. | MR | Zbl
[27] N. Masmoudi, The Euler limit of the Navier Stokes equations, and rotating fluids with boundary, Arch. Rational Mech. Anal 142 (1998) p. . | MR | Zbl
[28] N. Masmoudi, Ekman layers of rotating fluids, the case of general initial data, to appear in Communications in Pure and Applied Mathematics . | MR | Zbl
[29] J. Pedlovsky : Geophysical fluid dynamics, Springer, . | Zbl
[30] J. Rauch : Boundary value problems as limits of problems in all space, Séminaire Goulaouic-Schwartz, Ecole Polytechnique, exposé n.3,1978. | EuDML | Numdam | MR | Zbl
[31] S. Schochet : Fast singular limits of hyperbolic PDEs. J. Diff. Equ. (1994) . | MR | Zbl
[32] H.Swann, The convergence with vanishing viscosity of non-stationary Navier-Stokes flow to ideal flow in Trans. Amer. Math. Soc 157 (1971), 373-397. | MR | Zbl