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Pa r t i e l l e s

1997-1998

Yu N. Ovchinnikov and Israel Michael Sigal
On the Ginzburg-Landau and related equations
Séminaire É. D. P. (1997-1998), Exposé no XXI, 13 p.

<http://sedp.cedram.org/item?id=SEDP_1997-1998____A21_0>

U.M.R. 7640 du C.N.R.S.
F-91128 PALAISEAU CEDEX

Fax : 33 (0)1 69 33 49 49
Tél : 33 (0)1 69 33 49 99

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://sedp.cedram.org/item?id=SEDP_1997-1998____A21_0
http://www.cedram.org/
http://www.cedram.org/


OSVIII - Jun26:98

On the Ginzburg-Landau and related equations *

Yu. N. Ovchinnikov L.D. Laudau Institute, Moscow

I.M. Sigal Department of Mathematics, University of Toronto
Toronto, Ontario M5S 3G3 Canada
sigal@math.toronto.edu

Abstract. We describe qualitative behaviour of solutions of the Gross-Pitaevskii

equation in 2D in terms of motion of vortices and radiation. To this end we introduce

the notion of the intervortex energy. We develop a rather general adiabatic theory

of motion of well separated vortices and present the method of effective action which

gives a fairly straightforward justification of this theory. Finally we mention briefly

two special situations where we are able to obtain rather detailed picture of the

vortex dynamics. Our approach is rather general and is applicable to a wide class of

evolution nonlinear equation which exhibit localized, stable static solutions. It yields

description of general time-dependent solutions in terms of dynamics of those static

solutions “glued” together.

Introduction

In this paper we present our recent results on the Ginzburg-Landau and related Gross-

Pitaevskii equations. Our goal is to understand dynamics of vortices. The latter are

representatives of localized, particle-like structures appearing in solutions of many nonlinear

evolution equations. We consider the time-dependent Ginzburg-Landau equation of the

Schrödinger type:

i
∂ψ

∂t
= −∆ψ + (|ψ|2 − 1)ψ , (SE)

|ψ| → 1 as |x| → ∞ ,

where ψ : Rd+1 → Rm. (Rm is assumed to possess a complex structure.) This equation

comes up in condensed matter physics and nonlinear optics and is also known as the

Gross-Pitaevskii or Ginzburg-Pitaevskii equation.

* Supported by NSERC under Grant 7901.
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In this paper we consider the case m = d = 2. However many of our arguments are

also applicable to other dimensions and to related equations.

Static solutions

The vortices mentioned above are solutions of the corresponding stationary equation,

the proper Ginzburg-Landau equation

−∆ψ + (|ψ|2 − 1)ψ = 0 . (GLE)

There are two ways to classify solutions of this equation.

Topological classification

With each ψ : R2 → R2 we associate the map

ψ̂ :=
ψ

|ψ|
∣∣∣
|x|=R

: S1 → S1 .

Using a standard definition of the degree (see e.g. A. Schwarz (1993)), we set

degψ := deg ψ̂ ∈ Z .

All solutions to the (GLE) are classified according to this topological invariant. Depending

on the degree we have e.g.

degψ0 = ±1⇒ vortex/antivortex

degψ0 = n⇒ n-vortex .

The topological classification leads to the topological conservation law for the corre-

sponding time-dependent equations.

Group-theoretical classification

Now we want to isolate symmetric solutions. The symmetry group of (GLE) is

Gsym = O(2)× T (2)×O(2)
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(the group of rigid motions of the underlying physical space times the gauge group).

Consider the equivariant or “spherically symmetric” solutions ψ0: ∃ homomorphism ρ :

SO(2)→ SO(2) s.t.

ρ(g)ψ0(g−1x) = ψ0(x) ∀g ∈ O(2) .

The homotopy class of ρ’s determines degψ.

Existence and stability

Let Lψ0 be the linearized operator for (GLE) at a solution ψ0. We use the following

definition of the (linearized) stability:

Definition: A solution ψ0 is said to be stable iff

specLψ0 ⊂ R+ and NullLψ0 = gsymψ0 .

Here gsym in the Lie algebra of the group Gsym. Note that

gsymψ0 ⊆ NullLψ0 .

Theorem. ∀n ∈ Z ∃ a unique (modulo symmetry tranformations) vortex; |n| ≤ 1 vortices

are stable and |n| > 1, unstable.

References:

Existence: Hervé and Hervé (1994), Chen, Elliott and Qui (1994), Fife and Peletier

(1996), Ovchinnikov and Sigal (1997a).

Stability: Lieb and Loss (1994) and Mironescu (1994) for disc and |n| ≤ 1. Ovchin-

nikov and Sigal (1997a) for R2 and all n.

Related results: Chanillo and Kiesling (1995), Mironescu (1996) and Shafrir (1994).

Remarks.

(a) S. Gustafson (1997b) extended the result above to the non-commutative case. He

showed that for d = m ≥ 3 (monopoles, etc.) spherically symmetric solutions exist

only for n = ±1, and they are unique and stable.
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(b) Gustafson and Sigal (1998) generalized the above theorem to the order parameter ψ

coupled to a magnetic field (i.e. to magnetic or Abrikosov vortices).

Idea of the proof of the stability result

We follow Ovchinnikov and Sigal (1997a). The outline below, though formally in-

correct, gives a fairly good impression of our approach. Let ψ0 be the 1-vortex. Since it

breaks translation symmetry (ψ0(x) 6= ψ0(x+ h)∀h 6= 0),

∂xjψ0 are zero modes of Lψ0 ,

the linearized operator. (In fact ∂x1ψ0 and ∂x2ψ0 are “proportional” to each other, so we

can consider just ∂x1ψ0.)

We find a positivity (open) cone Γ ⊂ L2(R2,R2) s.t.

(i) ∂x1ψ0 ∈ Γ,

(ii) exp(−tLψ0) : Γ→ Γ (i.e. it is positively improving w.r.t. Γ).

Then the Perron-Frobenius theory implies that σ(Lψ0) ⊂ [0,∞) and 0 is a non-degenerate

eigenvalue. ¤

The reason that the argument above is incorrect is that the property (ii) does not

quite hold. For |n| ≤ 1, this hole can be patched up problem can be circumvented, while

for |n| > 1, not. In the latter case we construct a test function ξ s.t.

〈ξ, Lψ0(ξ)〉 < 0 ,

which shows that Lψ0 has a negative eigenvalue. ¤

Renormalized Energy

(GLE) is the equation for critical points of the celebrated Ginzburg-Landau functional

E(ψ) =
1
2

∫
{|∇ψ|2 +

1
2

(|ψ|2 − 1)2}d2x .

There is one problem with this functional though
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Theorem. Let ψ be a C1 vector field on R2 s.t. |ψ| → 1 as |x| → ∞. If degψ 6= 0, then

E(ψ) =∞.

Thus if we want to use energetic arguments for vortices we have to modify E(ψ).

We introduce the renormalized energy functional as follows (see Ovchinnikov and Sigal

(1997a))

Eren(ψ) =
1
2

∫
{|∇ψ|2 − (degψ)2

r2
χ+

1
2

(|ψ|2 − 1)2}d2x ,

where r = |x| and χ is a smooth cut-off function, = 0 for r ≤ 1 and = 1 for r ≥ 2. Critical

points of this functional are still given by (GLE) and it is a constant of motion for (SE).

In order to introduce our next key notion, we need the following notation and defini-

tion. Let c = (z,n), where

z = (z1, . . . , zk) , zj ∈ R2 ,

n = (n1, . . . , nk) , nj ∈ Z .

Definition: We say that ψ has a configuration c, conf ψ = c, iff ψ has zeros only at

z1 . . . zk with local indices n1, . . . , nk.

Now we introduce intervortex energy as

E(c) := inf{Eren(ψ)|confψ = c} . (∗)

(For variational problems with topological constraints see Fröhlich and Struwe (1990).)

Ovchinnikov and Sigal (1997b) argue that (actually the → direction is proven)

(∗) has a minimizer

←→ ∇zE(c) = 0

and show that in the cases of interest and for intervortex distances À 1,

∇zE(c) 6= 0 .

Hence for large intervortex distances we expect that there are no stationary vortex config-

urations.

For intervortex distances of order O(1) stationary configurations do exist, e.g. (see

Ovchinnikov and Sigal (1998b)); they correspond to various discrete subgroups of O(2):
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Fig. 1. Static vortex configurations

Pinning

Introduce impurities in order to nail the vortices down:

Eλ(ψ) = Eren(ψ) +
K∑

j=1

λj
2

∫
δbj |ψ|2 ,

where λ = (λ1, . . . , λk) and δb(x) = 1
2πr0

δ(|x− b| − r0),

Ovchinnikov and Sigal (1997b) argue that if λj ≥ const|∇zjE(c)|∀j, then Eλ(ψ) has

a minimizer in the class {confψ = c}.

Asymptotics of E(c)

Let R(c) be the intervortex distance. Ovchinnikov and Sigal (1997b) show that as

R(c)→∞,

E(c) =
K∑

i=1

Enj +H(c) +O(R(c)−1) , (AS)

where En is the (proper) energy of the n-vortex and H(c) is the Kirchhoff-Onsager Hamil-

tonian:

H(c) = −π
∑

i 6=j
ninj ln |zi − zj | .
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The idea of a demonstration of (AS) is as follows. The upper bound, E(c) ≤ r.h.s.(AS),

is obtained by choosing an appropriate test function and performing a rather delicate

many-body geometrical analysis. To prove the lower bound, E(c) ≥ r.h.s.(AS), we use the

pinning energy functional with λ = O(R(c)−1). This gives

E(c) ≥ inf{Eλ(ψ)|confψ = c} − CR(c)−1 .

For λj ≥ CR(c)−1, the minimization problem on the r.h.s. has a minimizer. The latter

satisfies the Euler-Lagrange equation

−∆ψ + (|ψ|2 − 1)ψ = −
∑

δbjψ .

This equation allows us to produce estimates on the minimizer in question which show

that it is of the same form as the aforementioned test function and therefore

inf{Eλ(ψ)|confψ = c} = r.h.s. (AS) .

The last two relations produce the desired lower bound which, together with the upper

bound mentioned above, yields (AS).

An expansion related to (AS) is derived in Bethuel, Brezis and Hélein (1994).

Multivortex dynamics

Problem: Consider (SE) with an initial condition corresponding to several vortices at

large distances from each other. The goal is to show that the corresponding solution can

be described in terms of moving vortices and find the dynamic law for the vortex centers.

Nonlinear adiabatic theory

Let ψ be a solution of (SE) with an initial condition of a configuration c and low

energy, say of order E(c) +O(1). To describe this solution, we proceed as follows (in what

follows n = (n1, . . . , nk) is fixed and is not displayed in the notation):

(i) Pick a “minimizer”, ψz of Eren(ψ) in {confψ = c}, c = (z,n),

(ii) Define the intervortex energy E(z) := E(ψz) and write the Hamiltonian equation

ż = J∇E(z), (∗)
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where J is a “symplectic” matrix on
k⊕
i=1

R2:

J = diag
(

1
πnj

( 0 1
−1 0

))
,

(iii) Insert the solution, z(t), of the Hamiltonian system above with an appropriate initial

condition into ψz. This gives the adiabatic order parameter as ψz(t),

(iv) We expect that the solution ψ is of the form

ψ = eiα(t)ψz(t) + ψdisp ,

where α(t) is some slowly varying real function of t and ψdisp is a radiation to ∞, the

latter of the order O(R(z)−2).

Effective Action Method

Now we explain the origin of the nonlinear adiabatic theory (see Ovchinnikov and

Sigal (1998a) for more details, some of the general ideas originate with Whitham (1974),

Manton (1981) and Stuart (1994)). Let S(ψ) be the action functional for Eqn (1.1):

S(ψ) =
∫ {

−
∫

1
2

Im(ψψ̇)d2x+ Eren(ψ)
}
dt ,

where Eren(ψ) is the renormalized Ginzburg-Landau functional introduced above. First we

find an approximate minimizer, ψz, of Eren(ψ) under the constraint that the vortices are

fixed at positions z1, . . . , zk, (z1, . . . , zk) = z. Next, we allow z to depend on time and plug

ψz(t) into S(ψ). The resulting action functional,

Seff(z) ≡ S(ψz) ,

describes the dynamics of the vortex centers in the leading approximation; it is equal

modulo
∫
O(lnR(z) ·R(z)−2)dt to the action functional

Svort(z) =
∫ {

− π

2

k∑

j=1

zj ∧ żj − E(z)
}
dt ,

whose critical points satisfy Eqn (∗).
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To go beyond this approximation we write ψ = ψz + α, where α is supposed to be a

small fluctuation field around ψz and expand S(ψ) in α up to the second order. Critical

points of the resulting functional satisfy the system of coupled equations

∂zSeff(z) = −∇zRe
∫
α∂ψS(ψz) (CEa)

S′′(ψz)α = −∂ψS(ψz) , (CEb)

where ∂ε stands for the variational derivative w.r. to ε and S′′(ψ) is the Hessian of S at

ψ, and where we dropped the higher order term ∇z
1
2Re

∫ ∫
αS′′(ψz)α. We demonstrate

that provided z satisfies (∗), one can perturb ψz slightly in such a way that Eqn (CEb)

has a solution of the order α = O(R(z)−1), provided t ≤ R(z)p for some p ≥ 0. To this

end we decompose the space R2 into several regions determined by the configurations z

and estimate Eqn (CEb) separately in each region. We call this method, the method of

geometric solvability.

Finally, we observe that Eqns (CE) stripped of inessential terms read

ż = J∇zE(z)−
∫
χ̈∇zϕ0d

2x ,

(∂2
t − 2∆)χ = −ϕ̈0 ,

where ϕ0(x) =
∑k
j=1 njθ(x − zj) and χ = phase of α. Here θ(x) is the polar angle of

x ∈ R2. This systems represents finite dimensional Hamiltonian equations for the vortex

centers z coupled to a wave equation for the phase fluctuation χ.

Special case: Two simple vortices

Take an initial condition for (SE) describing two simple vortices at the distance R

from each other.

Two vortices of the same charge: the vortices rotate around each other with the frequency

ω = 1
R2

Fig. 2. Motion of two 1-vortices
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and radiate at the same time, so that the distance between them grows as

R(t) = (3πt)
1
6

modulo lower order terms.

Two vortices of opposite charges: there is a critical distance Rcr s.t. for R > Rcr there

exists a travelling wave solution corresponding to the vortices moving parallel to each other

Fig. 3. Motion of a vortex-antivortex pair

while for R < Rcr, the vortices, as they move parallel to each other, emit a shock wave

(Cherenkov radiation) and eventually collapse onto each other.

arcsin
(√

2
v

)

Fig. 4. Shock wave produced by a vortex pair

References. The Hamiltonian dynamics of vortices was first suggested by Onsager (1949)

and then elaborated by Gross (1966) and Cheswick and Morrison (1980) on the basis

of analogy with the motion of an incompressible fluid. It was derived using multiscale

expansion by Neu (1990) and using the nonlinear adiabatic theory by Ovchinnikov and

Sigal (1998a). The rigorous proof that the vortices indeed are well defined for “low energy”

solutions ψ and that their centers are governed by the Hamiltonian system mentioned was

given by Lin and Xin (1998) and Colliander and Jerrard (1998) (these authors considered

(SE) in a bounded domain and with ε−2 in front of (|ψ|2 − 1)2).

The radiation phenomena was found in Ovchinnikov and Sigal (1988a), where the

coupled equations for the vortex motion and radiation, Eqns (CE), were derived.

The special case of two vortices of the same charge was analyzed by Ovchinnikov and

Sigal (1998c). The existence of a solitary wave for two vortices of opposite charge at a large
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distance from each other was predicted by Jones and Roberts (1982) (see also Iordanskii

and Smirnov (1978), Jones, Putterman and Roberts (1986), Kuznetzov and Rasmunssen

(1995) and Pismen and Nepomnyashchy (1993) and references therein) and was rigorously

proven by Bethuel and Sout (1998). The appearance of the shock wave at small distances

was suggested by Ovchinnikov and Sigal (1998c).

Conclusion

In this paper we presented a definition of a renormalized Ginzburg-Landau energy

and a conclusive result on stability of vortices of the Ginzburg-Landau equation. In order

to describe the dynamics of several vortices, we introduced the notion of the intravortex

energy and developed a general adiabatic theory. This theory is justified by the method of

effective action functional. Finally, we considered two examples where the general theory

is applied.
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C. Jones, S.J. Putterman and P.M. Roberts (1986), Motion of Bose condensation V, J.

Phys. A 19, 2991–3011.

12



OSVIII - Jun26:98

C.A. Jones and P.M. Roberts (1982), J. Phys. A: Math. Gen. 15, 2599–2619.
E.A. Kuznetzov and J.J. Rasmussen (1995), Instability of two dimensional solitons and

vortices in defocusing media, Phys. Rev. E 51, 5, 4479–4484.
E.M. Lieb and M. Loss (1994), Symmetry of the Ginzburg-Landau minimizers in a disc,

Math. Res. Lett. 1, 701–715.
F.-H. Lin and J.X. Xin (1998), On the incompressible fluid limit and the vortex motion

law of the nonlinear Schrödinger equation, preprint.
N.S. Manton (1981), A remark on scattering of BPS monopoles, Phys. Letters 110B, N1,

54–56.
P. Mironescu (1995), On the stability of radial solutions of the Ginzburg-Landau equation,

J. Funct. Anal. 130, 334–344.
P. Mironescu (1996), Les minimiseurs locaux pour l’équation de Ginzburg-Landau sont à
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