@article{SEDP_1996-1997____A9_0, author = {Pacard, Frank}, title = {Le probl\`eme de {Yamabe} sur des sous domaines de $S^n$}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:9}, pages = {1--14}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {1996-1997}, zbl = {1070.53501}, mrnumber = {1482815}, language = {en}, url = {http://www.numdam.org/item/SEDP_1996-1997____A9_0/} }
TY - JOUR AU - Pacard, Frank TI - Le problème de Yamabe sur des sous domaines de $S^n$ JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:9 PY - 1996-1997 SP - 1 EP - 14 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://www.numdam.org/item/SEDP_1996-1997____A9_0/ LA - en ID - SEDP_1996-1997____A9_0 ER -
%0 Journal Article %A Pacard, Frank %T Le problème de Yamabe sur des sous domaines de $S^n$ %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:9 %D 1996-1997 %P 1-14 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://www.numdam.org/item/SEDP_1996-1997____A9_0/ %G en %F SEDP_1996-1997____A9_0
Pacard, Frank. Le problème de Yamabe sur des sous domaines de $S^n$. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1996-1997), Exposé no. 9, 14 p. http://www.numdam.org/item/SEDP_1996-1997____A9_0/
[1] L.A. Caffarelli, B. Gidas et J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42, (1989), 271-297. | MR | Zbl
[2] P. Delanoë, Generalized stereographic projection with prescribed scalar curvature, Contemporary Mathematics : Geometry, Physics and Nonlinear PDE, V. Oliker et A. Treibergs edts. AMS (1990). | MR | Zbl
[3] D. Finn Positive solutions of singular at submanifolds with boundary, Indiana Univ. Math. J., 43 (1994), 1359-1397. | MR | Zbl
[4] D. Finn On the negative case of the singular Yamabe problem, MSRI dg-ga server, preprint (1996). | MR
[5] B. Gidas, W.M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Physics. 68, (1979), 209-243. | MR | Zbl
[6] N. Korevaar, R. Mazzeo, F. Pacard et R. Schoen, Refined asymptotics for constant scalar curvature metrics with isolated singularities, Preprint (1997). | MR
[7] C. Loewner et L. Nirenberg, Partial differential equations invariants under conformal or projective transformations. Contributions to Analysis. Acad. Press N.Y. (1974) 245-272. | MR | Zbl
[8] X. Ma et R. Mc Owen, Complete conformal metric with zero scalar curvature in Riemannian Manifolds Comm. P.D.E.
[9] R. Mazzeo, Regularity for the singular Yamabe equation, Indiana Univ. Math. J. 40 (1991), 1277-1299. | MR | Zbl
[10] R. Mazzeo et F. Pacard, A new construction of singular solutions for a semilinear elliptic equation using asymptotic analysis J. Diff. Geom. 44, (1996), 331-370. | MR | Zbl
[11] R. Mazzeo et F. Pacard, Constant scalar curvature metrics with isolated singularities MSRI dg-ga server, preprint (1996) | MR
[12] R. Mazzeo, D. Pollack et K. Uhlenbeck. Moduli spaces of singular Yamabe metrics, J. Amer. Math. Soc. 9 2, (1996), 303-344. | MR | Zbl
[13] R. Mazzeo, D. Pollack et K. Uhlenbeck. Connected sum constructions for constant scalar curvature metrics To appear, Top. Methods Nonlin. Anal. 6, (1995), 207-233. | MR | Zbl
[14] R. Mazzeo et N. Smale, Conformally flat metrics of constant positive scalar curvature on subdomains of the sphere, J. Diff. Geom. 34 (1991), 581-621. | MR | Zbl
[15] F. Pacard, The Yamabe problem on subdomains of even dimensional spheres, Top. Methods Nonlin. Anal. 6, (1995), 137-150. | MR | Zbl
[16] D. Pollack, Compactness results for complete metrics of constant positive scalar curvature on subdomains of , Indiana Univ. Math. J. 42, (1993), 1441-1456. | MR | Zbl
[17] R. Schoen, The existence of weak solutions with prescribed singular behavior for a conformally invariant scalar equation Comm. Pure and Appl. Math. XLI, (1988), 317-392. | MR | Zbl
[18] R. Schoen et S. T. Yau, Conformally flat manifolds, Kleinian groups and scalar curvature, Invent. Math. 92, (1988), 47-72. | MR | Zbl