@article{SEDP_1996-1997____A20_0, author = {Doi, Shin-ichi}, title = {Smoothing effect for {Schr\"odinger} evolution equation via commutator algebra}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:20}, pages = {1--13}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {1996-1997}, zbl = {1054.58012}, mrnumber = {1482826}, language = {en}, url = {http://www.numdam.org/item/SEDP_1996-1997____A20_0/} }
TY - JOUR AU - Doi, Shin-ichi TI - Smoothing effect for Schrödinger evolution equation via commutator algebra JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:20 PY - 1996-1997 SP - 1 EP - 13 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://www.numdam.org/item/SEDP_1996-1997____A20_0/ LA - en ID - SEDP_1996-1997____A20_0 ER -
%0 Journal Article %A Doi, Shin-ichi %T Smoothing effect for Schrödinger evolution equation via commutator algebra %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:20 %D 1996-1997 %P 1-13 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://www.numdam.org/item/SEDP_1996-1997____A20_0/ %G en %F SEDP_1996-1997____A20_0
Doi, Shin-ichi. Smoothing effect for Schrödinger evolution equation via commutator algebra. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1996-1997), Exposé no. 20, 13 p. http://www.numdam.org/item/SEDP_1996-1997____A20_0/
[Cr] W. Craig, Les moments microlocaux et la regularité des solutions de l’équation de Schrödinger, Seminaire, Equations aux Dérivées Partielles, Ecole Polytechnique (1995-1996), No. 20. | EuDML | Numdam | MR | Zbl
[CKS] W. Craig, T. Kappeler and W. Strauss, Microlocal dispersive smoothing for the Schrödinger equation, Commun. Pure Applied Math. 48, 769-860 (1995). | MR | Zbl
[Do1] S. Doi, Smoothing effects of Schrödinger evolution groups on Riemannian manifolds, Duke Math J. 82 (1996), 1-28. | MR | Zbl
[Do2] S. Doi, in preparation.
[GIS] C. Gérard, H. Isozaki, and E. Skibsted, Commutator algebra and resolvent estimates, Advenced Studies in Pure Mathematics 23, 69-82 (1994). | MR | Zbl
[KR] L. Kapitanski and I. Rodianski, Regulated smoothing for Schrödinger evolution, International Mathematics Research Notices No 2, 41-54 (1996) | MR | Zbl
[KS] L. Kapitanski and Y. Safarov, Dispersive smoothing for Schrödinger equations, Mathematical Research Letters 3, 77-91 (1996) | MR | Zbl
[Ya] K. Yajima, Smoothness and non-smoothness of the fundamental solution of time dependent Schrödinger equations, Commun. Math. Phys. 181, 605-629 (1996). | MR | Zbl
[Ze] S. Zelditch, Reconstruction of singularities for solutions of Schrodinger’s equation Commun. Math. Phys. 90, 1-26 (1983). | MR | Zbl