@article{SEDP_1996-1997____A19_0, author = {Merle, Frank and Zaag, Hatem}, title = {Estimations uniformes \`a l{\textquoteright}explosion pour les \'equations de la chaleur non lin\'eaires et applications}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:19}, pages = {1--8}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {1996-1997}, zbl = {1069.35505}, mrnumber = {1482825}, language = {en}, url = {http://www.numdam.org/item/SEDP_1996-1997____A19_0/} }
TY - JOUR AU - Merle, Frank AU - Zaag, Hatem TI - Estimations uniformes à l’explosion pour les équations de la chaleur non linéaires et applications JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:19 PY - 1996-1997 SP - 1 EP - 8 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://www.numdam.org/item/SEDP_1996-1997____A19_0/ LA - en ID - SEDP_1996-1997____A19_0 ER -
%0 Journal Article %A Merle, Frank %A Zaag, Hatem %T Estimations uniformes à l’explosion pour les équations de la chaleur non linéaires et applications %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:19 %D 1996-1997 %P 1-8 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://www.numdam.org/item/SEDP_1996-1997____A19_0/ %G en %F SEDP_1996-1997____A19_0
Merle, Frank; Zaag, Hatem. Estimations uniformes à l’explosion pour les équations de la chaleur non linéaires et applications. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1996-1997), Exposé no. 19, 8 p. http://www.numdam.org/item/SEDP_1996-1997____A19_0/
[1] Ball, J., Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford 28, 1977, pp. 473-486. | MR | Zbl
[2] Bricmont, J., Kupiainen, A., et Lin, G., Renormalization group and asymptotics of solutions of nonlinear parabolic equations, Comm. Pure Appl. Math. 47, 1994, pp. 893-922. | MR | Zbl
[3] Bricmont, J., et Kupiainen, A., Universality in blow-up for nonlinear heat equations, Nonlinearity 7, 1994, pp. 539-575. | MR | Zbl
[4] Chen, X., Y., et Matano, H., Convergence, asymptotic periodicity, and finite-point blow-up in one-dimensional semilinear heat equations, J. Diff. Eqns. 78, 1989, pp. 160-190. | MR | Zbl
[5] Filippas, S., et Kohn, R., Refined asymptotics for the blowup of , Comm. Pure Appl. Math. 45, 1992, pp. 821-869. | MR | Zbl
[6] Galaktionov, V., A., et Vazquez, J., L., Geometrical properties of the solutions of one-dimensional nonlinear parabolic equations, Math. Ann. 303, 1995, pp. 741-769. | MR | Zbl
[7] Giga, Y., et Kohn, R., Nondegeneracy of blow-up for semilinear heat equations, Comm. Pure Appl. Math. 42, 1989, pp. 845-884. | MR | Zbl
[8] Giga, Y., et Kohn, R., Characterizing blowup using similarity variables, Indiana Univ. Math. J. 36, 1987, pp. 1-40. | MR | Zbl
[9] Giga, Y., et Kohn, R., Asymptotically self-similar blowup of semilinear heat equations, Comm. Pure Appl. Math. 38, 1985, pp. 297-319. | MR | Zbl
[10] Herrero, M.A, et Velazquez, J.J.L., Blow-up behavior of one-dimensional semilinear parabolic equations, Ann. Inst. Henri Poin- caré 10, 1993, pp. 131-189. | Numdam | MR | Zbl
[11] Herrero, M.A, et Velazquez, J.J.L., Flat blow-up in one-dimensional semilinear heat equations, Differential and Integral eqns. 5, 1992, pp. 973-997. | MR | Zbl
[12] Merle, F., et Zaag, H., Refined uniform estimates at blow-up and applications for nonlinear heat equations, en préparation. | Zbl
[13] Merle, F.,et Zaag, H., Optimal estimates for blow-up rate and behavior for nonlinear heat equations, prépublication. | Zbl
[14] Merle, F., et Zaag, H., Stability of blow-up profile for equation of the type , Duke Math. J. 86, 1997, pp. 143-195. | MR | Zbl
[15] Zaag, H., Blow-up results for vector valued nonlinear heat equations with no gradient structure, Ann. Inst. Henri Poincaré, à paraî tre. | Numdam | MR | Zbl