@article{SEDP_1992-1993____A5_0, author = {Bethuel, F. and Rey, O.}, title = {Le probl\`eme des surfaces \`a courbure moyenne prescrite}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:5}, pages = {1--17}, publisher = {Ecole Polytechnique, Centre de Math\'ematiques}, year = {1992-1993}, mrnumber = {1240546}, language = {fr}, url = {http://www.numdam.org/item/SEDP_1992-1993____A5_0/} }
TY - JOUR AU - Bethuel, F. AU - Rey, O. TI - Le problème des surfaces à courbure moyenne prescrite JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:5 PY - 1992-1993 SP - 1 EP - 17 PB - Ecole Polytechnique, Centre de Mathématiques UR - http://www.numdam.org/item/SEDP_1992-1993____A5_0/ LA - fr ID - SEDP_1992-1993____A5_0 ER -
%0 Journal Article %A Bethuel, F. %A Rey, O. %T Le problème des surfaces à courbure moyenne prescrite %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:5 %D 1992-1993 %P 1-17 %I Ecole Polytechnique, Centre de Mathématiques %U http://www.numdam.org/item/SEDP_1992-1993____A5_0/ %G fr %F SEDP_1992-1993____A5_0
Bethuel, F.; Rey, O. Le problème des surfaces à courbure moyenne prescrite. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1992-1993), Exposé no. 5, 17 p. http://www.numdam.org/item/SEDP_1992-1993____A5_0/
[1] Weak convergence of Palais-Smale sequences for some critical functionals, to appear. | MR
,[2] Multiple solutions to the Plateau problem for nonconstant mean curvature, to appear in Duke Math. J. | MR | Zbl
, ,[3] Multiple solutions of H-Systems and Rellich's conjecture, Comm. Pure Applied Math. 37, (1984), pp. 149-187. | MR | Zbl
, ,[4] Convergence of solutions of H-Systems or how to blow bubbles, Arch. Rat. Mech. Anal. 89, (1985), pp. 21-56. | MR | Zbl
, ,[5] Regularity of weak H-Surfaces, J. Reine Angew. Math. 329, pp. 1-15. | MR | Zbl
,[6] Über die Existenz einer Fläche konstanter mittlerer Krümmung bei vorgegebener Berandung, Math. Ann. 127, (1954), pp. 258-287. | MR | Zbl
,[7] Randwertprobleme für Flächen mit vorgeschriebener mittlerer Krümmumg und Anwendungen auf die Kapillaritätstheorie, Math. Z.112, (1969), pp. 205-213. | MR | Zbl
,[8] Sobolev and isoperimetric inequalities for riemannian submanifolds, Comm. Pure Appl. Math. 27, (1974), pp. 715-727, et 28, (1975), pp. 765-766. | MR | Zbl
, ,[9] Multiple integrals in the calculus of variations, Springer, Berlin (1966). | MR | Zbl
,[10] Heat flow for the equation of surfaces with prescribed mean curvature, Math. Ann. 291, (1991), pp. 123-146. | MR | Zbl
,[11] The existence of minimal immersions of spheres, Ann. Math. 113, (1981), pp. 1-24. | MR | Zbl
, ,[12] Minimal immersions of closed Riemann surfaces, Trans. Amer. Math. Soc. 271, (1982), pp. 639-652. | MR | Zbl
, ,[13] On the existence of surfaces with prescribed mean curvature and boundary, Math. Z. 146, (1976), pp. 113-135. | MR | Zbl
,[14] On the uniqueness of surfaces with prescribed mean curvature spanning a given contour, Arch. Rat. Mech. Anal. 94, (1986), pp. 101-122. | MR | Zbl
,[15] Nonuniqueness in the Plateau problem for surfaces of constant mean curvature, Arch. Rat. Anal. 93, (1986), pp. 135-157. | MR | Zbl
,[16] Large H-surfaces via the mountain-pass Lemma, Math. Ann. 270, (1985), pp. 441-459. | MR | Zbl
,[17] Plateau's problem and the Calculus of Variations, Mathematical Notes 35, Princeton University Press (1988). | MR | Zbl
,[18] Multiple solutions to the Dirichlet problem for the equation of prescribed mean curvature, Analysis, et cetera, Academic Press, Boston (1990). | MR | Zbl
,[19] The Dirichlet problem for the equation of prescribed mean curvature, Ann. Inst. Henri Poincaré, Anal. non linéaire, 9, (1992), pp. 643-655. | Numdam | MR | Zbl
,[20] An existence theorem for surfaces of constant mean curvature, J. Math.Analysis Appl. 26, (1969), pp. 318-344. | MR | Zbl
,[21] A general existence theorem for surfaces of constant mean curvature, Math. Z. 120, (1971), pp. 277-278. | MR | Zbl
,[22] The differential Δx = 2H(xu Λ xv) with vanishing boundary values, Proc. A.M.S. 50, (1975), pp. 113-137. | Zbl
,[23] Das problem von Douglas für Flächen konstanter mittlerer Krümmung, Math. Ann. 133, (1957), pp. 303-319. | MR | Zbl
,