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Semilinear diffraction of conormal waves
(joint work with Melrose and Si Barreto)

Maciej Zworski

1. Introduction. The purpose of this expos6 is to describe the results of [27] on the
conormal regularity for a class of mixed problems for the semi-linear hyperbolic equations
and to indicate the general approach which is used in that paper.

The study of C°° regularity of solutions to non-linear wave equations has had two main
directions: finding estimates on the strength of the anomalous singularities, i.e. those not

present in the linear interaction, and obtaining geometric restrictions on the location of
singularities. Our work is of the latter type. The strength of singularities for non-linear
mixed problems has already been investigated with considerable success in [38, 9, 16, 40].
The estimates on the location of singularities are much finer, so stronger assumptions are
needed on the incoming waves or the initial data. The most striking example of this was
provided by [2] where it is shown that wave-front set restrictions alone still allow the self-

spreading of of singularities, making the singular support propagate essentially in the same
way as the support of the solution. Thus, in full generality, the location of singularities cannot
be related to the original geometry except in a trivial way. A technically more challenging
construction of a similar example for gliding mixed problems was then given in [39].

The appropriate class of distributions to consider for the incoming waves or the initial
data are the conormal distribations, as was first noted in [6]. The conormal distributions
appear naturally in the linear theory and are a subclass of the Lagrangian distributions
motivated by geometrical optics. The interaction of conormal waves for interior problems
has been investigated in [33, 24, 7, 8, 3, 35, 26] and the formation of non-linear caustics in
[13, 14, 10, 20, 36, 37]. For mixed problems, with only transversal reflections allowed, it

was shown in [4, 5] that no anomalous singularities appear. One should also mention that
examples of ’new’ non-linear singularities were provided at an early stage in [32]: namely, the
interaction of three plane waves carrying conormal singularities produces a conic surface of
new singularities propagating from the triple interaction point. However, in more complicated
settings such as the propagation of the swallowtail or diffraction, where the ’new’ cones are
expected, no examples have yet been constructed. For interior problems [15] provides a
systematic approach to such constructions.

We consider a mixed hyperbolic problem with a diffractive boundary (see Sect.2 for a
review of definitions). Our object of study is the semi-linear equation:

where P is a strictly hyperbolic operator, X is a C°° manifold with the boundary aX ,
X- = Ix  -T} with § E C°°(X) a time function for P and the time T fixed.
The nonlinearity is quite general, f E COO( X, C) .

The initial data is assumed to be conormal to the incident front F. We assume that

The reflection rule of geometrical optics produces the reflected f ront R . With the motivation
coming again from the geometric optics we define the shadow boandary on OX as
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The front obtained from the nonlinear interaction is the forward half-cone, S’+, of P- bicharacteristics
starting on r . Let us also denote by D+ and B+ the two components of the set of glancing
characteristics on S+ . A more detailed discussion of the fronts is presented in Sect.2. Fig.l
shows three different time slices and Fig.2 is a space-time picture. Note that R and F are
hypersufaces with singular boundaries.

Figure 1: The fronts projected to the space variables at fixed times

The crudest form of our result is

Theorem 1 Let u E L°°(X ) be a bounded solution of of (0.1) with

Then

We refer the reader to [18] and ~11~, Sect.18.3 for the definition of the b-wave front set, WFb ,
which reduces to the ordinary WF away from the boundary We use the natural map

j: T *X , 0 -~ 6T *X ~ 0 (see the references given above) to define 6lV*E = ~(~V"E).
Theorem 1 immediately gives the singular support statement:

Corollary 1 Under the assumptions of Theorem 1

Since the data uo is conormal, one would like to describe precisely the conormal regularity
of the solution ~c . In fact the proof is based on the construction of an appropriate space with
good multiplicative and propagative properties - see Sect.5. Since the precise definition of
this ’strong’, but not quite conormal, space is rather involved we shall content ourselves with
a weaker statement here, referring the reader to Definition 2 and Theorem 5 in Sect.5 for the
full result.

Theorem 2 Let u E L°°(X ) be a bounded solution of (0.1) with
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Figure 2: The forward half-cone and the glancing boundaries B and D .

If Q is an open subset of X such that

then

Already in the transversal case this is slightly stronger than the result in [4] as conormal
singularities with respect to the boundary are excluded.

Our conclusions are concerned purely with the L 2 -based regularity. The present existence
theory [38] requires higher Sobolev regularity for uo to guarantee local existence of bounded
solutions, so one needs to assume uo e H(s)(X-) for s &#x3E; n/2. However,
the conormal results described above should lead to to an improvement in the style of [34].
It should be noted that our present method does not treat the fully semi-linear equation
Pu = Vu), essentially because the iteration procedure in k proceeds in steps of 1/2
- see Theorem 4 below.

2. Diffractive geometry. First we describe the interaction of a characteristic hypersurface
for a second-order hyperbolic operator with a bicharacteristically concave (diffractive) bound-
ary. In particular we point out in Proposition 1 that the reflected front has cusp singularity
when continued across the boundary.

Let X be a manifold with boundary equipped with a pseudo-Riemannian metric of hy-
perbolic signature, +, -, -, - .... The metric symbol p E S2 (T*X) is therefore a polynomial
of degree two on each fibre and it can be reduced, in linear coordinates in each fibre, to

The boundary of X is said to be time-like if p is negative-definite on this is always
assumed below. It will be convenient to assume that X is time oriented; this amounts to the
continuous selection of one of the solid cones, p &#x3E; 0, in the fibres. A function t E C°° (X ) is
a time-function if p(dt) &#x3E; 0.

The assumption that 0X is time-like means that it carries an induced pseudo-Riemannian
metric of hyperbolic signature. If g is the dual quadratic form to p, on TX, then ga = gITaX
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fixes the induced structure. Let pa denote the metric symbol on T*aX. In set

respectively the hyperbolic, glancing and elliptic regions of The time-orientation
of X induces a time-orientation of i9X, giving the decomposition of the hyperbolic region.

The points of 9 are further distinguished by the behaviour of the second Poisson bracket:

These, and similarly their images in 9 under c* , are respectively the sets of diffractive, higher-
order and gliding points. The boundary of X is said to be diffractive (or bicharacteristically
concave) if 9 = gd; this is the assumptions made in our work.

We will be concerned with the local geometry near a base point xo E 0X, so we are free
to shrink X as necessary. In this sense the assumption that the boundary is diffractive is
really C Gd. In case X = R x Y carries a product metric, g = dt2 - h, with h
a Riemann metric on Y, the boundary is diffractive if and only if OY is strictly geodesically
concave. In case Y = R’~~K where K is an open, smoothly bounded region and h is the
Euclidean metric this is equivalent to the strict convexity of K (cf. [19]).

It is convenient to consider an extension, X, of X to a manifold without boundary. A
corresponding extension of this pseudo-R,iemannian structure will be denoted p. The defining
function x E C°°(X) extends to x E C°°(X) and if X is chosen small enough, 0X = ~x = 0}
is an embedded hypersurface. The freedom to shrink X will be used to choose X to be

bicharacteristically convex.
In X we consider a closed characteristic hypersurface for p, passing through this point

xo. Thus F C X satisfies

The characteristic hypersurface F is to be thought of as the extension through the bound-
ary of X of the incident front. It is important to separate which parts of F are intrinsic and
which depend on the choice of extension-the latter being necessarily irrelevant to the final
form of the results.

By assumption N*F is closed, so it is the union of the maximally extended bicharacteristic
interval, i.e. integral curve of Hp, through each of its points. Set

F = Iz E F fl X; the bicharacteristics through stay in T*X for t  t(z)}.

Here, t is a time function. The submanifold r C F is the singular locus in F near which
it is not even a manifold with corners. Indeed the boundary of F consists of two smooth
manifolds with boundary (each of codimension two in X)
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Here Fa is half of Fa and B, the shadow boundary, is the projection into X of the forward
half-bicharacteristic starting at points of 

The main objective of this section is to consider the reflected front generated by F and
0X. To do so we need to recall the notion of a hypersurface with cusp singularity. By
definition a cusp hypersurface is one which is diffeomorphic to C = = in 2.

A simple characterization can be obtained in terms of the closure of the conormal bundle
to the regular part of the hypersurface. As is easily checked

is a smooth, homogeneous Lagrangian. Now a point of the singular locus, L = = x2 = 0},

x Ac 2013~ R~ has differential with

two - dimensional null space at Ac fl T¡*Rn, I E L.

Moreover, any vector field V on T *R~ which is tangent to and takes the value

v E Tm(Tj*Rn) at m is only simply tangent to Ac at m. Conversely (see Arnol’d
[1]) if these two conditions hold for Ac near m E T,*Rn n Ac then the projection of a
neighbourhood of m E Ac is a cusp. We use this abstract characterization, with Rn replaced
by X (as can obviously be done) to analyze the reflected front.

Set AR = Ia(NåxF) and let ~1R be the Hp-flow-out in T*X 10 of AO Thus AR is just
the union of the maximally extended Hp integral curves passing through points of lo

N V

Proposition 1 If F C X is a smooth characteristic hypersurface for which xo E OX is a

diffractive point then, for X shrunk to a sufficiently small bicharacteristically convex neigh-
IV N

bourhood of XO, AR C a smooth closed conic Lagrangian submanifolds which is the
closure of the conormal bundle to a hypersurface with cusp singularity, R, through xo.

Clearly the cusp locus L C R passes through r. It is important to check that

LBF C X~X and LR is simply tangent to 8X at r.

Since the tangent space to L is just the image of the tangent space to AR under the projection,
L is certainly tangent to aX at r. In the case of the wave equation in the exterior of a convex
obstacle Proposition 1 was given in [41]. In that case the cusp locus L projected to the space
variables is the envelope of the reflected rays, see Fig.3.

We also remark that although the extension p was used in the definition of A R , the part of
R corresponding to the true reflection is determined by p and F alone. It will be denoted by
R and is defined as follows. We can easily prove that R~F has four components, two of which
are disjoint from L . We now take as R the closure of the one for which R fl OX = F fl i9X.
A more natural but longer definition can be given in terms of tracing of the bicharacteristics
in AR .

The bicharacteristic cone over the shadow boundary in aX, r is now defined in the
standard way, as the union of the maximally extended bicharacteristic intervals over 
We denote it by AS and its projection by S. We note however that although Six depends on
the extension p, the half cone S’ defined by the glancing boundaries B and D , B C F does
not - see Fig.2. We can separate the forward and retarded components, 5~, respectively,
and similarly denote by S+ the full forward cone over r . We also denote by B+ and D+
the intersections of B and D with cl S+ respectively.
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Figure 3: The extended reflected front projected to the space variables at a fixed time.

In the non-linear interaction more geometry is present. In addition to the cone over r
we will also have to include, in a very residual way, smooth characteristic surfaces tangent
to S at D - see Sect.5. Thus we define

with the first easy observation that nhelz H = D .
3. The general strategy. The purpose of this section is to outline the general method for
finding the geometric location of singularities of solutions to semilinear hyperbolic equations.
The particular approach used in the study of semi-linear diffraction [27] originates from [24].
For the purpose of the general discussion we will consider the interior problem and thus
assume that the bicharacteristically convex region X is open (i.e. has no boundary). It will
also be convenient to take X compact and contained in a larger bicharacteristically convex
region. For such X we want to study

where X is the domain of influence of X- and the location of singularities of uo is given
in some appropriate sehse. To simplify the presentation and to avoid the and Hlkc
based spaces, we shall always tacitly assume that the prescribed regularity of uo extends to
a larger open set. We assume that the solution exists in X (taken sufficiently small) and
that u E L°° (X ) . The simplest case of propagation of regularity involves no geometry:
Example. If u E L°°(X) satisfies (0.4) with uo E then u E 
Proof: Consider X E C°°(X) such that X = 0 in X, X- and X = 1 in X’ C X_ , where
X- is the domain of influence of XL. We can then solve the following linear equation:

Since uo E H~k~(X_) fl LOO(X_), the Leibnitz rule shows that E H(k)(X-).
Thus the energy estimates give ul E H~k~(X ) . We then consider a nonlinear equation
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with the aim of showing that U2 E H(k)(X) as we observe that ~c = ~cl + ~2 . This is easily
proved by induction:
Step 1. Since U2 E L2(X) (as Ul + U2 E H(k)(X)) the energy estimate implies
that ~c2 E 

Step 1  k . We know that ~c1 + U2 E L°° (X ) so the Leibnitz rule shows that
+ U2) E H(l)(X). The energy estimate now gives ~c2 E H(1+1) and consequently

Ul + U2 E 
We observe that only very special properties of H k? (X ) were used in the proof of the

elementary example and if, in this case, we define JkL (X ) = H(k)(X) they were
Coo -algebra property

C°°-module property

Propagation property

We will refer to the first two properties as (A) and to the third one as (P). We will
always assume that JoL2(X) = L2(X). The simple example now generalizes to

Proposition 2 If a vector subspace JkL2(X) C L2(X) satisfies the conditions (A) and (P)
above and u E a solution of (0.,~) with uo E JkL2(X)IX_ then u E JkL2(X).

We can replace the property (P) by a weaker property

for some fixed 6 &#x3E; 0 as long as we define satisfying (A) (in the example it is

obviously H~s~(X) ). The second condition in (P) can also be modified if we are interested
in a more restricted set of initial data.

We now want to pass to the case of non-trivial geometry. The simplest is provided by the
conormal distributions associated to a smooth hypersurface. If F C X is a C°° hypersurface
in a C°° manifold X, let V = V(X, F) be the Lie algebra of C°° vector fields in X tangent
to F. The space of distributions of finite L2-based conormal regularity with respect to F is
then defined by the stability of regularity under the applications of the elements of V :

This modifies the definition of the Sobolev space H(k) by placing some geometric restrictions
on the differentiations. Nevertheless, as observed in [24], bounded conormal functions have
very good multiplicative properties in view of Gagliardo-Nirenberg type inequalities.

In fact any Lie algebra of vector fields could be taken in place of F) . Thus for any
variety S consisting of characteristic surfaces, their singular loci and intersections, we can
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define a space IkL2(X, S) by taking as V all vector fields tangent to all components of S .
As varieties we could take in X = R3:

For the spaces IkL2(X, S) the algebraic property (A) comes for free and the main effort
goes into establishing (P). In the two examples (0.7) and (0.8) above that is quite easy by
commuting P through V (i.e. using the P-completeness of the Lie algebras of vector fields
- see [24]) but consider instead

with C, L and P as in (0.8) and H = {~1 = 0} - see Fig.4. This is the problem studied in
[26] and as we shall see in Sect.5 it is highly relevant in diffraction. The space IkL2(R3, So)
cannot have property (P) as it includes any function conormal to the origin. Thus u in

(P) could be singular on the cone Q obtained by projecting to R3 the null bicharacteristics
passing through T’~ ~ ~R~ B 0. In other words the union of the conormal bundles of the

components of So, N*So is not closed under the Hamilton flow of the symbol of P. Thus
we need to enlarge our variety to

for which N*S is closed under the Hamilton flow. The space has the property
(A) but it is not known to satisfy (P) (and it most likely does not) as the P-completeness
property for the Lie algebra of tangent vector fields does not hold. The same problem is
encountered in the case of triple interaction, swallowtail and diffraction.

Figure 4: The cusp and a transversal plane.

To define a conormal space with reasonable propagation of regularity for P, one follows
the method originating from [24] and subsequently applied in [20, 26, 35, 36, 37]. Its essence
is the resolution of singularities and the use of the vector fields tangent to the lifted geometry
in the resolved space. The insistence on conormality is motivated by the good multiplicative
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properties of bounded conormal functions, as already indicated above and the conviction that
conormal regularity excludes any hidden singularities that could produce self-spreading.

Roughly speaking the method can be described as follows. By a successive application of
real blow-ups (see Sect.4 for an example) we obtain a resolution

of X with the blow-down map Q . The space Xp is a manifold with corners with a natural
measure vp pushing forward to the measure on X . The blow-ups are supposed to resolve
the geometry in the sense that /3*S U 0Xp consists of cleanly intersecting submanifolds (see
[21, 22]). We then define 0Xp) same as before and take as the new space

Again, the space JkL2(X ) satisfies the algebraic property (A) immediately and the main
difficulty lies in proving (P). In fact we cannot in general hope for the propagation and the
variety Q*S U needs to be extended. However the clean intersection property achieved
in Xp brings us closer to the P-completeness, referred to after (0.7) and (refeq:24) - now
in Xp . Although that can be exploited only partially it explains a better chance for the
property (P) to hold.

Let us now adopt an opposite point of view and concentrate on defining spaces for which
the propagation property (P) holds automatically but (A) is hard to verify (or simply is not
true!). We start again with the simplest example of a C°° hypersurface F and define the
Lagrangian distributions associated to the Lagrangian AF = N*F 10:

Of course, this is just the conormal space associated to F and defined above. This definition
generalizes however to any conic Lagrangian A and if A lies in the characteristic variety of
P, then the space IkL2(X, A) has the property (P). That is quite easy and can for instance
be seen by conjugating P and A to a suitable model.

In the analogy with the varieties in the base space X we now consider Lagrangian varieties
consisiting of conormal bundles of the components of the varieties in the base and all their
succesive intersections. For example, in the cases (0.7) and (0.8) we now have

We could again apply the direct analogy with the case of one Lagrangian and define a space as
in (0.11) by demanding that the symbols of the defining operators vanish on all components
of £ . When the intersections are clean as in (0.12) that in fact is quite sufficient, but when
they are not as in (0.13) the space could be too big for propagation (though in this particular
example it is not). To define better spaces we break the Lagrangian varieties into nested
families ~C :
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where A is a conic Lagrangian and Ki’s are conic embedded submanifolds. In example (0.12)
there were three such families and in (0.13) two:

For a nested family K, Melrose [23] defined a natural class of marked Lagrangian distributions:

These spaces have nice propagation properties as is illustrated in the following

Proposition 3 Let p = and let A C T *X ~ 0 be a C°° homogeneous’ Lagrangian.
Suppose that K = ~1 fl lp = 0} is a C°° hypersurface in A along which Hp is tangent
to A exactly to some fixed order and transversal to K . Then, if A’ is the Hp flow-out of
A n {p = 0}, the space

has the property (P).
This proposition can be stated more generally, allowing in particular multiple markings, but
it already indicates that in ’reasonable’ situations (such as those given by (0.12) and (0.13))
we can obtain microlocally defined spaces associated to a given geometry and for which (P)
holds. For instance for the cusp we take [20]:

" ,

Ideally, the space obtained by summing up the marked Lagrangian contributions coming
from the full geometry could be equal to the one obtained by pushing forward the conormal
space in Xp. It would then satisfy (A) and (P) automatically and in view of Proposition 2
could be applied to the study of regularity for semi-linear problems. That is however rarely
the case. In fact the microlocally defined spaces are usually larger and may not even be
algebras. To produce the actual space we need to ’play’ on both sides and in addition use
the properties of the lifted equation in Xp, such as the second microlocal ellipticity [36] or
the propagation of the support [27], Sect.5.

In this rough outline I was not able to indicate the essential new difficulties encountered
in the study of the mixed problem (1). Nevertheless, the general strategy applies and we aim
at obtaining a space with X a manifold with boundary, such that (A) holds. We
can only obtain a modification of (P), (0.6), with E = 1/2. That in particular bars at the
moment the study of the fully semi-linear mixed problem.
4. An example. To illustrate the general discussion in Sect.3 we shall now present an
example [20, 36] of relating microlocal and conormal spaces. This will also give us a chance
to introduce the sub-marked Lagrangian distributions [42] which together with the super-
marked ones ([27], Sect.4) are crucial in the diffractive estimates ([27], Sect.7).

Thus we recall (0.8)

with the Lagrangians



II-11

and the marking

The singularity of C at L can be resolved in one non-homogeneous blow-up of L :

Figure 5: The lifted variety 3*S.

The lift of the cusp, /3*C = L), is now very nice (see Fig.5) and we consider
the lifted variety O*S = ,0*C U aX p. To describe it, we introduce projective coordinates in
four neighbourhoods near 0* Ixi = 0, ±xj &#x3E; 0}. For instance, for i = 2, j = 3 and + we
take (z, r, X ) such that

We easily define the conormal space associated to (3* S and, for instance in the coordinates

(0.15), that means requiring stability under r8r and (1- X2)ôx. The space

automatically satisfies (A) and we will come to back to its propagative properties at the end
of this section.

We now turn to the microlocal picture and start with IkL2 (X, AL) . The symbols of
operators defining this space (see (0.11) are generated over SO by

and thus
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To define A, K) we need to modify (0.17) by demanding that the Hamilton vector
fields of the generators are tangent to h’ :

so that

Comparing (0.17) and (0.18) we see that the only difference is in the generator z)+°(3 with
a = 0 and a = 1 respectively. Thus one expects that changing a in some suitable way should
vary the rate of marking. For 0  a  1 that introduces sub-marking and for 1  a  oo

super-marking. The precise definition is more involved especially in the latter case where to
have invariance more geometric information needs to be introduced (see [27], Sect.4). Here
we will discuss the relevant case of a = 2 which amounts to changing (0.18) to

where the operator corresponding to the fourth symbol has now weight two in the following
sense:

for even k = 21. For odd k = 21 + 1 we define the space by complex interpolation between
the even-indexed neighbours.

Since the spaces are essentially defined by vector fields the lifting and push-forward under
Q are quite easy:

where

Thus, we are getting more in the lift than one might naively expect, with an improvement
however when a finer microlocal space is used.

To discuss the cusp we observe that symplectically

and thus after some computations
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and for even k = 2l ,

and then for k = 21 + 1 by complex interpolation. The lifting of these spaces is relatively
easy but already additional care is needed to deal with the higher order operators:

The push-forward is considerably harder again in view of the presence of higher order oper-
ators. In particular, we cannot characterize the lift of the spaces associated to Ac alone:

Combining (0.22),(0.23),(0.25) and (0.22),(0.24),(0.26) we see that the microlocally defined
spaces

have the property (A). By Proposition 3 the first space has property (P) and since that
proposition holds also for the sub-marked spaces, so does the second. Thus in view of

Proposition 2 both spaces propagate for the semi-linear equation.
As observed by Sa Barreto [36] the natural conormal space JZL2(X) obtained by the

push-forward (0.16) also propagates! An outline of his argument gives us an opportunity to
see an example of the analysis ’upstairs’ in the blown-up space X/3. Thus let us consider the
lift of the operator P = Dxl D.,3:

Since from (0.22),(0.23) and (0.25) we know that U,0*C U Pi) propagates,
we only need to eliminate the singularities at

Roughly speaking that is done by using the ellipticity (in the totally characteristic sense
of Melrose [18]) of Pp in the relevant region. In fact, in the coordinates (0.15) 3-IX3 =
0} n 8Xa = {X = r = 0} and modulo lower order terms

Since we already have the stability under TDr and Dz we can restrict our attention (microlo-
cally in 0) to the region where Once X f’t.J 0, PC is
indeed elliptic there. More care is of course needed to exploit this properly and we should
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also remark that the argument can be made independent of propagation for the microlocal
space J%L2(X). One only needs the very easy propagation of IkL2(X, S) with S as in (0.8).
5. The pseudo-conormal space for the diffractive problem As described in Sect.2
the interaction geometry is quite complicated as it involves cusp and conic singularities.
Following the strategy outlined in Sect.3 we want to resolve the singularities and the method
of resolution is similar to that used in [26, 37]. In particular it involves a non-homogeneous
blow-up. To describe it let us consider

on which we define an R+ -action Tl-2-3:

We start with a definition of spaces of functions with given non-homogeneous orders of
vanishing:

This allows us to the define a filtration of the differential operators in terms of homogeneity.
Thus

. ",." -- --,.,., - - -,..."

The homogeneous differential opc itor important in our discussion is Friedlander’s operator
in R 3 :

A suitable coordinates are now given by

Proposition 4 There exist coordinates 1

and with the notation of Sect.2 and any H E R given by (0.3)
, . , , , - _ =

We will consider the surfaces on the right-hand side as the model geometry. The sense
in which they are models can be explained as follows. The model surface for F in c) is

characteristic for Friedlander’s operator Po and the cusp R is obtained from that model
surface by reflection (according to the rules of geometric optics given in Proposition 2.1)
through the boundary x2 - ix 2= 0. Note that this surface, although microlocally diffractive
near N*R, is not globally diffractive for Po : it contains the characteristic fxl = x2 = 0} .
Thus we see 0 and essentially it has to contain a term of the form -cx2D;1 which
destroys the degeneracy of the characteristic {xl - X2 = 0} . The surface defined by the
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right hand side of d) is the cone over 0 E R3 with respect to the characteristic flow-out by
Po .

In view of Proposition 4 it is natural to resolve the geometry using the 1-2-3 blow-up
given by the R+ -action (0.27). Thus we define the space

where S1_2_3 is a non-round sphere ~w E R3 : : 1} and where the C°°
structure on Xl is given by the second identification (see [21]). We now have the blow-down
map

which is a diffeomorphism on Xi ) aXl . Thus following [21] we define the pall-back of Y to
be

N 1I iy

The lifts are smooth hypersurfaces in Xi intersecting the boundary
cleanly, and 13iR has a cusp singularity transversal to Also,

,- L -- - - - - - .- 1 4. - --j - - - -- . -

The boundary of the resolved space and the above intersections are shown in Fig.6.
The cone on the right hand side of d) in Proposition 4 is essentially symmetric with

respect to the interchange of x, and 2*3 (a 1-2-3 homogeneous change of variables transforms
Q to 4X3XI - a~, see [26]).Roughly speaking, an additional blow-up near 0*(Q n H) n 0Xi
is needed to undo the asymmetry of the 1-2-3 blow-up. 

-

To introduce it we first change coordinates in a 1-2-3 homogeneous way, preserving R
and taking Q to a~. We then apple an almost-homogeneous change of variables to
preserve Q but take H to ix, = 0}. Using the lift of these coordinates, we blow-up with
the 2-1-1 homogeneity the codimension three submanifold 0Xi = X2 = O,X3 &#x3E; 0} =

where S2 is a half non-round sphere

with the coordinates in X, nearoxlno*D+ I chosen so that 01(Xl, X2, r, y) = (T Xl, r2 X2, r 3, y) E
X. The manifold X2 has a codimension two corner and Ok2 is shown in Fig.7.

Since Sand H are simply tangent at D another blow-up is still needed:

Here, the line (32D+ is blown-up with the 2-1-0 homogeneity in the coordinates where
r 

where lV is a neighbourhood
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Figure 6: The geometry on OT(l as seen from the positive X2 direction.

There are additional tangencies and singularities that have not yet been resolved: the

tangencies described in Proposition 2.5 persist in Xl at !3i B as does the cusp singularity
of at !3iL. The former is resolved using a successsion of normal blow-ups [25] (see
Fig.8) and the latter using the 3-2 blow up [36], only at 3*B+ and respectively

~xl &#x3E; 0} . This leads to the space X4 :

see Fig.7.
For future reference we also define analogously to X4 but obtained by applying the

same blow-ups at the lifts of rather than of D+, ~+, B+ only:

We shall now define the C°° -algebra Jk L~ (X , H ) associated to the geometry in the
open manifold X . In the notation we stress the dependence on the ’artificial’ characteristic
hypersurface H E R .

Let us first consider the surfaces in X4 obtained from the geometry in X :

where we note that the lifts of B+, D+ and L+ are included in the boundary of X4 . Let S
be the variety obtained by taking a disjoint union of the five submanifolds above with aX4:
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Figure 7: The hierarchy of blow-ups

Ideally, we would want to define JkL~(X, H) as the Q -pushforward of the conormal spaces
associated to s which is in fact done for the interior problem. Here, however, this would be
disastrous.

We also need to define C X1 which in some sense constitues a ’non-

homogeneous’ past. Thus we start by defining qo E C’(,ki) independent of r and y as

Thus f3iQ = {(r,c~, y) : qo(w) = 0} is the model cone (see Proposition 4). We then consider
{(r,c.~, y) : "~}? which for small E &#x3E; 0 has three components. We take as Ki

the component which contains where Q- is the model retarded cone over r. We can
take c small enough so that

Since the all the higher generation blow-ups occur away from K1 we can think of it as a
subset of X4 (or Q14Ki = 

Definition 1. For k E No, we define

where the variety 8 is given by (0.32) and Kl = K1(f) is given above with c such that (0.33)
is satisfied. The norm is defined using the norm of the lift:

We also define by demanding that u, Du E JkL~(X, H), with the obvious norm.
For non-integral values of the order of regularity we use complex interpolation and define:

and similarly for 
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Figure 8: The three normal blow-ups of 3*B

This is a pseudo-conormal space as it involves an additional condition in Kl . The corre-
sponding pseudo-conormal space for the manifold with boundary X is essentially obtained
by restriction with an additional singular support condition:
Definition 2. For s &#x3E; 0, s E R we define

We recall that using the regularity function s1£( x) (cf. [11], Sect. 18. 1), we define sing 
ix : s} which by lower semi-continuity is closed. The space is not a

normed space and although it can be made into a Fréchet space we shall not need this fact
here.
Remark. Although the definition of the blow-up involves the choice of H, it can in fact be
made independent of it. It is also true that away from F the spaces is the same as

the space defined without including the lift of H in the defining variety. That statement is
non-trivial only near D .

The complications of the definitions are now compensated by the simplicity of the proof
of the following

Theorem 3 The spaces and given by Definitions
1 and 2 respectively are C°° -modules and Coo -algebras.
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As in the earlier work on conormal regularity the difficult part is the propagation theorem.
For the interior problem it follows from the results of [26] and refined estimates in the ’non-
homogeneous’ past Kl .

The main result of [27] is the propagation theorem for the Dirichlet problem and the
space 

Theorem 4 If flx- = 0 and u E L2(X) satisfies

then

Theorems 3 and 4 provide almost all of modified properties (A) and (P) needed for the
semi-linear propagation. We still need to check that

which is however comparatively easy with the right hand side much larger than necessary.
Thus we can finally give our main result:

Theorem 5 Let u E be the solution of the semi-linear mixed problem:

The results presented in Sect.1 are easy consequences of Theorem 5 and the definitions.
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