Variétés inertielles dans le cas non auto-adjoint. Applications aux variétés lentes
Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1991-1992), Exposé no. 20, 11 p.
Temam, Roger 1

1 The Institute for Scientific Computing and Applied Mathematics, Indiana University, Bloomington, IN, USA.
@article{SEDP_1991-1992____A20_0,
     author = {Temam, Roger},
     title = {Vari\'et\'es inertielles dans le cas non auto-adjoint. {Applications} aux vari\'et\'es lentes},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"},
     note = {talk:20},
     pages = {1--11},
     publisher = {Ecole Polytechnique, Centre de Math\'ematiques},
     year = {1991-1992},
     mrnumber = {1226499},
     language = {fr},
     url = {http://www.numdam.org/item/SEDP_1991-1992____A20_0/}
}
TY  - JOUR
AU  - Temam, Roger
TI  - Variétés inertielles dans le cas non auto-adjoint. Applications aux variétés lentes
JO  - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
N1  - talk:20
PY  - 1991-1992
SP  - 1
EP  - 11
PB  - Ecole Polytechnique, Centre de Mathématiques
UR  - http://www.numdam.org/item/SEDP_1991-1992____A20_0/
LA  - fr
ID  - SEDP_1991-1992____A20_0
ER  - 
%0 Journal Article
%A Temam, Roger
%T Variétés inertielles dans le cas non auto-adjoint. Applications aux variétés lentes
%J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
%Z talk:20
%D 1991-1992
%P 1-11
%I Ecole Polytechnique, Centre de Mathématiques
%U http://www.numdam.org/item/SEDP_1991-1992____A20_0/
%G fr
%F SEDP_1991-1992____A20_0
Temam, Roger. Variétés inertielles dans le cas non auto-adjoint. Applications aux variétés lentes. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1991-1992), Exposé no. 20, 11 p. http://www.numdam.org/item/SEDP_1991-1992____A20_0/

[1] A.V. Babin, M.I. Vishik, Attractors of evolutions equations, North-Holland, Amsterdam, 1992. | MR | Zbl

[2] P. Constantin, C. Foias, O. Manley, R. Temam, Determining modes and fractal dimension of turbulent flows, J. Fluid Mech. 150, (1985), p.427-440. | MR | Zbl

[3] P. Constantin, C. Foias, B. Nicolaenko, R. Temam, Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations, Springer-Verlag, New York, (1989). | MR | Zbl

[4] P. Constantin, C. Foias, R. Temam, Attractors representing turbulent flows, Mem. Amer. Math. Soc., (1985), vol.53. | MR | Zbl

[5] P. Constantin, C. Foias, R. Temam, On the dimension of the attractors in twodimensional turbulence, Physica D., 30, (1988), p.284-296. | MR | Zbl

[6] A. Debussche, R. Temam, Inertial manifolds and the slow manifolds in meteorology, Diff. Int. Equ., 4, (1991), p.897-931. | MR | Zbl

[7] T. Dubois, F. Jauberteau, R. Temam, Solutions of the incompressible Navier-Stokes equations by the nonlinear Galerkin Method, to appear. | MR | Zbl

[8] C. Foias, G.R. Sell, R. Temam, Variétés inertielles des équations différentielles dissipatives, C.R. Acad. Sci. Paris, Serie I, 301 (1985), 139-142. Inertial manifolds for nonlinear evolutionary equations, J. Diff. Eqs., 73 (1988), 309-353. | MR | Zbl

[9] I.C. Gohberg, M.G. Krein, Introduction to the Theory of Linear non Selfadjoint Operators, Translations of Mathematical Monographs, vol, 18. Amer. Math. Soc., 1969. | MR | Zbl

[10] J. Hale, Asymptotic behavior of dissipative systems, Mathematical Surveys and Monographs, vol 25, AMS Providence. | MR | Zbl

[11] F. Jauberteau, C. Rosier, R. Temam, The nonlinear Galerkin method in computational fluid dynamics, Applied Numerical Mathematics, 6, (1989) 190, p.361-370. | MR | Zbl

[12] F. Jauberteau, C. Rosier, R. Temam, A nonlinear Galerkin Method for the Navier-Stokes equations, Computer Math. in Appl. Mechanics and Engineering, 80, (1990), p.245-260. | MR | Zbl

[13] M. Kwak, Finite dimensional inertial forms for the 2D Navier-Stokes equations, University of Minnesota, AHPCRC, Preprint, 1991. | Zbl

[14] O.A. Ladyzhenskaya, A dynamical system generated by the Navier-Stokes equation, J. Soviet Math. 3, n°4, (1975), p.458-479. | Zbl

[15] O.A. Ladyzhenskaya, On the determination of minimal global B- attractors for semigroups generated by boundary value problems for nonlinear dissipative partial differential equations, Steklov Institute, Leningrad 1987.

[16] J. Lamini, F. Pascal, R. Temam, Implementation of finite element nonlinear Galerkin methods using hierarchical bases, J. Comp. Mech., to appear | MR | Zbl

[17] C.E. Leith, Nonlinear normal mode initialization and quasi-geostrophic theory, J. Atmos. Sci., 37, (1980), p.958-968. | MR

[18] J. Mallet-Paret, G.R. Sell, Inertial manifolds,for reaction-diffusion equation in higher space dimension, J. Amer. Math. Soc., I, (1988), 805-866. | MR | Zbl

[19] R. Temam, Inertial manifolds, The mathematical Intelligencer, 12, n.° 4, (1990), p.68-74. | MR | Zbl

[20] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics Applied Mathematical Sciences, vol. 68, Springer Verlag, New York, 1988. | MR | Zbl

[21] J.J. Tribbia, Nonlinear initialization on an equatorial Beta-plane, Mon. Wea. Rev., 107, (1979), 704-713.