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The present paper is a summary of a work to be published. We are interested in
lowerbounds for pseudo-differential operators. Our guideline will be one of Fefferman and
Phong’s conjecture (see §7 in [6] and [2]) : if a(x, Dx) is a second order operator, its lower
bound will be given by some average of its symbol on canonical images of the unit cube in
the phase space. Namely, we wish to prove roughly, in some cases :

as an operator, where Qo is the unit cube of R2n, ~ a family of canonical transformations
to be specified. The inequality above gives a connection between the geometry of the
symbol a(x, ç) and the spectral properties of its quantization a(x, Many papers were
devoted to these questions. The classical sharp Garding inequality was first proved by
Hôrmander [10] : first order &#x3E; 0 implies a(x, Dx) semi-bounded from below.

We refer to ([12] section 18.1 or [1]) for a proof of this inequality, yielding also the
case of systems, previously studied by Lax and Nirenberg [13]. In his paper on the Weyl
calculus [11], Hôrmander proved an inequality with a "gain" of 6/5 derivatives. Namely,
if a(x, ~) is a symbol of order 6/5 such that

then is semi-bounded from below. There, trace+a is a positive quantity re-
lated to the Hessian of the symbol introduced by Melin [14]. On the other hand, Fef-
ferman and Phong proved a two-derivatives inequality [3] for non-negative symbols :
a(r , fl) second order &#x3E; 0 implies a(x, D~~ semi-bounded from below (see also the proof
in [12], section 18.6). Moreover, these authors discussed the conjecture stated above for
non negative symbols of order 2 - s , e &#x3E; 0 (see [6]).

The present work is concerned with various cases involving symbols which can take
large negative values.
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1. Preliminary remarks

In this section, we recall through examples some of the features of Fefferman-Phong’s
view of the uncertainty principle (see [3]-[7] and [2]). One achievement of quantum me-
chanics is the interpretation of the stability of the hydrogen atom, namely the fact that
for n = 3, one has

as an operator. A direct proof of ( 1.1 ~ is easily obtained from Hardy’s inequality and the
use of polar coordinates. In this case, "volume-counting" is enough, sinse the symplectic
volume of the set where the symbol of ( 1.1 ~ is negative is finite. However this is not the
case for the following example, studied by Weder [16] and Herbst [19] ; in three dimensions,
one has

This non-local pseudo-differential operator is a quantization of a relativistic hamiltonian.

The scaling properties of (_~)1/2 - show that it is either non-negative or
unbounded below. The operator (1.2) cannot be understood from a "volume-countring"
point of view since the volume of the negativity vet of its symbol is infinite. If we examine
the symbol l~l - &#x3E; 2), we note that if k is negative and small enough its averages
on symplectic cubes f(X, e), Ixl [  will be non-negative. As a matter of fact,
this operator is analogous to -0 - ~ ~ x ~ -2 (n &#x3E; 3) (see [2]). In the latter case the critical
constant is kc( n) = ( n2 2 )2 ; namely if k  ( n2 2 )2, -~ - klxl-2 &#x3E; 0 and unbounded below
if k &#x3E; (n22)2. The critical constants for operators of type (1.2) can be found in the work
of Herbst [9].

Our general policy will be as follows : given a symbol a(x, ~), find a family of canonical
transformations ~, tailored on the geometry of a, as restricted as possible, so that the lower
bound of a(x, Dx) is given by a(x, Odxdç, where Qo is the unit cube of R2n.
The next section provides a case in which it can be done explicitly.
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2. The Schrôdinger Equation with Magnetic Potential
We are interested in the following operator

where Dj = 1 and An, V are real polynomials of degree  m (Note that V is1 ,,an

not assumed to be non-negative). We set-up

the Weyl symbol of the operator P.

We denote by lfm the group of canonical transformations of R2n of the following type :

where xo E &#x3E; 0 and 0 is a real polynomial of degree  m.

Theorem 2.1. For each integer m, there exists 8m &#x3E; 0 such that the following property
holds. If Ai, ’ - ’, An, V are real polynomials of degree  m and if the symbol p(x, ~) given
by (2.2~ satisfies

for any X E ~m defined in (2.3), Then the operator P given by (2. ) ils non-negative.
In other words, whenever (2.4) is satisfied, we have

Let’s note that the magnetic potential is a one-form A = Ajdxj and that

Here, the quotient norm of A modulo exact forms is equivalent to the norm of curl A.

The first step in the proof is the

Lemma 2.2.- For any m, there exists C~ &#x3E; 0 so tha,t ~2.4~ implies, for any ~a e R,n
and any R &#x3E; 0

where B = curl A.
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Next, we introduce, for x given in Rn,

Assuming that V is not constant, R - is continuous strictly increasing from 0 to
0o with R. We define then, for A &#x3E; 1 to be chosen later, and for r E Rn , R~x~ to be the
unique R E (0, oc) such that

It is then possible to prove that the metric is slowly varying. More precisely, we have
the

Lemma 2.3.- For

Using the lemma 2.3, we can construct a partition of unity and the localized problems
as well as the commutator terms can be handled using the lemma 2.2 and the result for
V &#x3E; 0 proved in Mohamed-Nourriga,t [15] (see also-Helffer-Nourrigat [8]).

3. Pseudo-differential operators
First of all, we intend to show that the non negativity of averages of a symbol on

special boxes of volume I ensures that the Calderôn-Zygmund procedure used by Fefferman
and Phong ([3]-[7]) leads to the same trilogy. These authors proved that if a is a non-

negative symbol of order 2, it is possible to find a pseudo-differential calculus such that a,
still second-order, will be microlocally either elliptic or bounded or non-degenerate i.e. of
the form T2 + V (t, ~, ~), where V is a pseudo-differential potential. This decomposition is
still valid if we assume only non-negativity for some averages of the symbol.

a. The proper class of a symbol
call Hôrmander metric on R2n a slowly varying, a-temperate metric G so that

G  Go’ (see section 18.5 in [12]). For each X e R2n , GX is a positive definite quadratic
form on R 2n , such that the three following properties are satisfied.

(3.1) There exists C &#x3E; 0 such that, for any X, Y, T e R2n GX(Y - X)  C-1 implies
C-1Gy(T) :5 Gx(T)  CGy(T).
(3.2) For any X, T e R2n , @ Gx(T)  Gx(T), where = sup a(T, U)2, a the

symplectic form on R2n. There exists C &#x3E; 0, N such that, for any X, Y, T in R2’~

Let’s also define the reciprocal Planck function
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A function a E C°°(R2n) belongs to sm(G) if for any k, there exists Ck such that

any X, T in R’~ .

The semi-norms of a are the best constants

For a given a e s2 ~ G~, we consider

with

The next proposition nummarizes the properties of a Calderon-Zygmund decomposi-
tion of a symbol

Proposition 3.1.-
(1) The metric g defined by (3.6) is an Hôrmander metric i.e. satisfies (3.1), (3.2), (3.3).

The constants in (3.1) for g depend only on the constants in (3.1) for G and on

(2) We have À(X) according to (3.4) and (3.7).

(3) The symbol a E S2(g) and

2

(4) We have a(X)  
Note that, in this proposition, a is any symbol in S2 (G~ without any non-negativity

assumption. The proof is essentially standard and will not be given here.

b Rescaling the non-negativity assumption
An important step in the proof is the following lemma, analogous to lemma 18.6.9 in

[12].
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Lemma 3.2. Let 6,,E be given positive numbers and a aC°° function on ~x~  1 in R’~,
so that

(iii) The averages of a on balls of radius e are non-negative.
Then there exists and w(b) positive so that if (i), (ii) and (iii) are satisfied

-(b) we have, on 

c. Egorov theorem
An other important ingredient is the "Sharp Egorov Principle" proved by Fefferman

and Phong in [6].
Theorem 3.3.

Let g be a quadratic form on such that g = -1 T, where a &#x3E; 1 and r is a

quadratic form such that r = riT (see 3.2). Let a real valued supported in Q, a
g-ball of radius 1. Let X be a canonical transformation such that

Then, there exists a Fourier Integral Operator U, bounded on L2 (Rn ~ and r E so

that

Using these results, we are reduced to study T2 + V (t, x, e) where V is a pseudo-
differential operator whose symbol can take (large) negative values.
d. A one dimensional result

Let’s take a E S2 (G), where G is an Hôrmander metric so that Gx = 
where rx = F (This is the case for the classical 0 dos in or ( f" )’ We’ll denotex ( 1 ( p 6
by gx = the proper conformal metric of a, defined in proposition 3.1. Our first
assumption is

Then, we introduce a family (D of canonical transformations : X e 4l is C°°, canonical and
satisfies
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Theorem 3.4 (n=1).-
These exists &#x3E; 0 such that, if (3.8) is satisfied, for a E S2(G), and so that

for any symplectic cube Q and aiiy y E (b, the

where C depends only on a finite fixed l1umber of se.mj-norms of a.

Here a symplectic cube denote any g = f (t, r), max( t ~, (/r 1))  1 } where t, 7 are linear
symplectic coordinates in R2.
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