@article{SEDP_1989-1990____A10_0, author = {Petkov, V. M.}, title = {Les singularit\'es du noyau de l'op\'erateur de diffusion pour des obstacles non-convexes}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:8}, pages = {1--12}, publisher = {Ecole Polytechnique, Centre de Math\'ematiques}, year = {1989-1990}, zbl = {0707.35092}, language = {fr}, url = {http://www.numdam.org/item/SEDP_1989-1990____A10_0/} }
TY - JOUR AU - Petkov, V. M. TI - Les singularités du noyau de l'opérateur de diffusion pour des obstacles non-convexes JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:8 PY - 1989-1990 SP - 1 EP - 12 PB - Ecole Polytechnique, Centre de Mathématiques UR - http://www.numdam.org/item/SEDP_1989-1990____A10_0/ LA - fr ID - SEDP_1989-1990____A10_0 ER -
%0 Journal Article %A Petkov, V. M. %T Les singularités du noyau de l'opérateur de diffusion pour des obstacles non-convexes %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:8 %D 1989-1990 %P 1-12 %I Ecole Polytechnique, Centre de Mathématiques %U http://www.numdam.org/item/SEDP_1989-1990____A10_0/ %G fr %F SEDP_1989-1990____A10_0
Petkov, V. M. Les singularités du noyau de l'opérateur de diffusion pour des obstacles non-convexes. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1989-1990), Exposé no. 8, 12 p. http://www.numdam.org/item/SEDP_1989-1990____A10_0/
[1] The propagation of singularities along gliding rays. Invent. Math., 41 (1977), 197-232. | MR | Zbl
and :[2] Singularities of the scattering kernel for generic obstacles. Preprint. | Numdam | Zbl
, and :[3] Stable Mappings and Their Singularities. Springer Verlag, New York, 1973. | MR | Zbl
and :[4] Sojourn time and asymptotic properties of the scattering matrix. Publ. Res. Inst. Math. Sci., Supl. 12 (1977), 69-88. | MR | Zbl
:[5] Scattering Theory. Academic Press, New York, 1967. | MR | Zbl
and :[6] A representation formula for the scattering operator and the inverse problem for arbitrary bodies. Comm. Pure Appl. Math. 30 (1977), 165-194. | MR | Zbl
:[7] Singularities and energy decay of acoustical scattering. Duke Math. J., 46 (1979), 43-59. | MR | Zbl
:[8] Singularities on boundary value problems, I, II. Comm. Pure Appl. Math., 31 (1978), 593-617 and 35 (1982), 129-168. | MR | Zbl
and :[9] Singularities of the scattering kernel for two convex obstacles. Publ. RIMS Kyoto University, 25 (1989), 223-238. | MR | Zbl
:[10] Singularities of the scattering kernel for two balls. J. Math. Soc. Japan, 40 (1988), 205-220. | MR | Zbl
and :[11] High frequency asymptotics of the scattering amplitude for non-convex bodies. Comm. PDE, 5 (1980), 293-329. | MR | Zbl
:[12] Scattering Theory for Hyperbolic Operators. North-Holland, Amsterdamn, 1989. | MR | Zbl
:[13] Periods of multiple reflecting geodesics and inverse spectral results. Amer. J. Math., 109 (1987), 619-668. | MR | Zbl
and :[14] Spectrum of the Poincaré map for periodic reflecting rays in generic domains, Math. Z., 194 (1987), 505-518. | MR | Zbl
and :[15] On the number of periodic rays in generic domains. Ergodic Theory and Dynamical Systems, 8 (1988), 81-91. | MR | Zbl
and :[16] Singularities of the scattering kernel and scattering invariants for several strictly convex obstacles. Trans. Amer. Math. Soc. 312 (1989), 203-235. | MR | Zbl
and :[17] Singularities of the scattering kernel for a class of starshaped non-convex obstacles. Math. Appl. Comput., (to appear). | Zbl
and :[18] Conditions against rapid decrease of oscillatory integrals and their applications to inverse scattering problems. Osana J. Math., 23 (1986), 441-456. | MR | Zbl
:[19]
: Unpublished manuscript, 1989.[20] Nonexistence of generalized scattering rays and singularities of the scattering kernel for generic domains in R3. Preprint, 1989. | Zbl
:[21] Asymptotic Methods in Equations of Mathematical Physics. Gordon and Breach Sci. Publ., 1988. | MR | Zbl
: