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One considers the Schrodinger equation with a potential vanishing asymptotically as
a homogeneous function of a negative degree at infinity. The asymptotic formulas for
the forward scattering amplitude and for the total scattering cross-section are derived.
These formulas are valid for high energies and large coupling constants g if, moreover,
gI~-1 --i oo.

1. We start by an operator definition of the amplitude of scattering by a potential
q(x). Let Ho = -0, H = -A + q(x), q = q, be self-adjoint operators in the space ?-~ _
L2(Rd), d &#x3E; 2, and q(x) = rx &#x3E; 1, as lxl - 00. Then the strong limits

exist and are called wave operators. Since HW± = the scattering operator S =

W+W_ commutes with Ho. Consider now the representation

which is defined by the relation

with f being the Fourier transform of f . This representation diagonalizes Ho so that S
acts there as a multiplication by an operator-function S(A) = S(H, Ho; A) : L2(Sd-1) -

which is called the scattering matrix. If 2a &#x3E; d + 1 the operator S(A) - I is an
integral operator with a kernel denoted by

where K = Àl/2 is a wave number. The function is called the amplitude of
scattering in the direction p for the direction w of the incident beam of particles of an
energy K2.

Another definition of the scattering amplitude may be given in terms of the
Schr6dinger equation

with a &#x3E; d, then for every k’ &#x3E; 0 and every VJ E Sd-I there exists unique solution of (1)
such that
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Function F and f are related by

and F is also called the scattering amplitude.
In terms of F the total scattering cross-section is defined by

Under the assumption (2) with a &#x3E; d the scattering amplitude is a continuous function of
and K so that the forward amplitude is correctly defined. It is connected

with a(w; K~ by the so-called optical theorem

which is a consequence of unitarity of S(A). The total scattering cross-section a(w; K) is
finite if 2a &#x3E; d + 1. We emphasize that

with 11 - being the Hilbert-Schmidt norm. Thus the integral of u(w; K) over w has an
invariant meaning though definitions of f (w, w; Ii’) and K) depend on the representa-
tion of 71.

2. Replacing q(x) by gq(x) we introduce a coupling constant g into notation. We shall
keep track of the dependence of various objects on g, e.g. we denote f( ’P, W; ~~, g). The aim
of the present talk is to describe asymptotics of and u(w;K,g) as K -&#x3E; oo

and g -&#x3E; oo. Note that according to (4) results on the forward scattering amplitude
are more general than those on a(w; k, g). Moreover, if a E]dt1,d] the total

scattering cross-section is finite though does not have sense.

Now we describe briefly some well known results. We begin with a case K - oo,
9 -3 00, ~V := g(2K)-1 --+ 0 when the perturbation theory (or the Born approximation
in physics terms [La-Li]) can be applied. Denote by Aw a plane which is orthogonal to c~,
decompose each x E Rd into a sum x = zw + b with z = (w, x), b E Aw and set

Then as shown in [Hu], [Bu], [Je] under the assumption (2)
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as K - oo, g - oo and lV --~ 0.

In the region N - oo (or in the intermediary case N - const) the asymptotics of f and
~ can not be studied by the perturbation theory. Moreover, if N - oo these asymptotics
are expected to be very sensitive to the behavior of q(x) at infinity. For a potential q(x)
with a compact support it was conjectured (see e.g. [En-Si]) that

as g = c~ 2013~ oo, c = const this is, clearly, equivalent to the quasi-classical limit when
the Planck constant h -~ 0 and other parameters are fixed. Here a classical scattering
cross-section O"cI(W) is by definition a Rd-1-measure of the orthogonal projection of supp
q onto A~. This conjecture was proved in an averaged (over K) sense in [Yaj]. The

averaging was removed in [Ro-Ta,2] where, however, the so-called non-trapping condition
on the corresponding classical system was required.

3. Let us consider now the simplest case ~V =const when the perturbation theory can
not be applied. Set

with Vw(b; q) defined by (5).
Theorem 1. Suppose that q is continuous, twice differentiable with respect to lx I and
functions for K = 1,2 are bounded. Let also condition (2) be fulfilled.
Then for each &#x26;ced N there exist finite limits

which are uniform in N  No  oo.

The detailed proof of this theorem can be found in [Yaf,2]. It is based on the so-

called eikonal approximation. Roughly speaking, this means that the function O(X, W7 K, g)
defined by (1), (3) has the asymptotics

as g = 2NK --~ oo, N =const.

Note that taking N - 0 one can deduce relations (6) from (8).
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4. Our main goal is to discuss asymptotics of f (w, c~; K, g) and K, g) in the region
K - oo, g -3 oo and N - oo. We restrict ourselves to potentials q(x~ with an asymptotics

at infinity. Set v == (~ - 1)"~~ = In the paper [Bi-Yaf] it

was conjectured that as N - oo the following relations should be true

We shall see that these asymptotics are correct if only understood in an averaged sense.
Namely, for arbitrary ~ E Co (R) such that suppç C [-1, ] and f ç2(p)dp = 1 define

Now we can state

Theorem 2.- Let the condition (9) be fulfilled. Then

Let us make some comments on this theorem. The region (14) where (12), (13) hold
true depends on a but not on d. Clearly, this region becomes larger the smaller a is. The
quasi-classical (g = = const and large coupling constant (g -~ oo, K fixed) limits
are always permitted. In case a &#x3E; 2 in the region (14) g should tend to infinity but it

is permitted that h’ -~ 0 if only oo. Moreover, in case a E (3/2, 2), d = 2 the
asymptotic formula (13) is true even for h’ -~ 0, g fixed (i.e. in a low energy limit).

Assumptions on an averaging parameter t are of a technical nature. Clearly, the result
is stronger if i is smaller. We permit that t tends to zero but not too quickly.

We do not have any local assumptions on q. If q is bounded only for large lxi, i.e. for
x ft B where B is some ball, then the Hamiltonian Hg = -A + gq(x) should be defined as
an arbitrary self-adjoint operator for which
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Such Hamiltonians certainly exist but are not unique. In the ball B a perturbation is
quite arbitrary and it is not even required that it should be an operator of multiplication.
For example, in addition to q satisfying (9) we permit perturbations of H~ by differential
operators of arbitrary order if their coefficients have compact supports. In such cases wave
operators W:f:( H g, H 0) exist but the stationary method of their construction can not be
applied and the unitarity of the scattering matrix S(Hg, 1 Ho, A) may be violated. In this

singular situation only the first (time-dependent) definition of makes sense.
Relations (12), (13) hold true for f and o, defined by a scattering matrix S(Hg, Ho; a) for
any self-adjoint Hg obeing (15).

The proof of the upper bound for a(av) with the correct power ~VP was obtained in
[Am-Pe] and [En-Si]. To that end only the upper bound (2) for q is required. Under this
assuption it is possible also to prove that

In the paper [Bi-Yaf] relations (10), (11) were derived from the asymptotics for large num-
bers of eigenvalues of Ho; a) accumulating to a point 1. In [Bi-Yaf] such asymptotics
was found for fixed A = u2 and g. If this asymptotics was justified uniformly in and

g, then similarly to a central case [La-Li] it would have ensured (10), (11) (or (12), (13)).
Unfortunately such an approach to the proof of Theorem 2 seems to promise nothing.

The proof of Th.2 relies on the separate consideration of different regions of R d
It turns out that the asymptotics of f and a are determined only by the region where

N~. There q(x) can be replaced by qas(x) and the problem is reduced by scaling to
the "critical" case N =const studied in Th.l. The region where treated

by perturbation theory. The main difficulty is to estimate the contribution to f and a of
the ball Ix I = 0(Nv). This is performed by time-dependent means and requires averaging
over K. Note that for a potential supported in a ball of a radius R averaged f and a
are bounded by CRd-l. Thus it is natural to expect that the difference of scattering
amplitudes and scattering cross-sections for potentials which coincide outside of the ball of
the radius o(N~) is bounded by o(N ,(d-1) )= o(NP). Our proof of this result is somewhat
similar to that of [En-Si] but demands an introduction of an auxiliary "free" Hamiltonian.
The detailed proof of Th.2 can be found in [Yaf,3].

Let us compare relations (6) and (12), (13). They are qualitatively different in two
respects. First, by (6) as N --+ 0 the forward scattering amplitude is vanishing as N and
the total cross-section -as N2, whereas by (12), (13) f and a are growing as N -; oo with
the speed determined by the fall-off of q(x) at infinity. Second, as N --3 0 the asymptotics
of f and Q depend on values of q(x ) for all x E Rd . On the contrary, as N -&#x3E; oo the

asymptotics of f and a are determined only by the asymptotics of q(x) at infinity.

According to Th.l in the "critical" case N =const, the forward scattering amplitude
and the total scattering cross-section converge as K - oo to finite limits. As in the case
N -~ 0 these limits depend on values of q(x) for all x E Rd but are calculated in terms of
integrals (7) as in the case N -3 00. I
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5. The method used for the proof of Th.2 can be applied [Yaf,3] also to the high-
energy scattering on strongly singular potentials when the Born approximation (6) fails to
be true.

Set now = (~ -1) 1, P = (d - I)v. Then in the region
N - 0, gk’~-2 --~ oo the relations (I2~ for &#x3E; d and (I3) for 20 &#x3E; d + 1 are fulfilled if

.~Nv --~ 00~ .~ = 0(K).
Compared to (6) in the singular case K, g) and a(w; k, g) are vanishing slower

as N - 0 and their asymptotics are determined only by the singularity of q(x) at x = 0.

If the potential is exactly of the form q(x) _ then the relations (12), (13)
hold true in the whole region oo. The assumptions N - oo (Th.2) or ~V 2013~ 0
(Th.3) are required only to replace q by its asymptotics at x = o0 or x = 0.

6. Let us return now to the study of the case N -~ oo. In what follows potentials are
supposed to be bounded.

Without averaging the relations (10) and (11) are in general violated. Moreover, the
usual point of view that for a potential with a compact support the total cross-section
should be bounded by a constant depending only on the size of its support fails also to be
true. It is a consequence of the following assertion 

Theorem 4. Let q(x) = q(r), x E R3, r = have a compact support and let q(r)  0
on a set of a positive Lebesgue measure in R+. Then for each K &#x3E; 0 there exists a sequence
9t = oo as t -~ oo such that the lower bound

holds.

Let us give an idea of the proof. Recall that for every = 0,1, 2, ~ ~ ~ the solution of
the equation 

- -

satisfying 01(r) = 0(r’+’) as r --~ 0 has an asymptotics

as r -~ oo. In terms of phase shifts bt = the total scattering cross-section is
determined by the formula

Thus for the proof of Th.4 it suffices to establish :
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Lemma 5. Under the assumptions of Th.4 for all sufhciently there exist coupling
constants gl = such that -xl2 and c2.~2.

The "anormal" growth (16) of the total scattering cross-section has of course a res-
onant nature. Suppose that q(r)  0 and q(r) = 0 for r &#x3E; ri . For orbital momentum

.~, .~(.~ + 1 ) &#x3E; K2 r¡, the effective potential

does not allow a classical particle coming from infinity with an energy 1~2 to penetrate
into the region where r2 ~ ~(~+ 1)~1-2. Thus for large f a classical particle does not "feel"
the potential well gq(r) supported in [0, In contrast to a classical, a quantum particle
can penetrate through a barrier .~(~ + 1)r-2 on account of tunneling. Thus the potential
gq(r) perturbs all phase shifts ôi but with the growth of the barrier the influence of gq(r)
is generically quickly vanishing so that are small for large f . However, lemma 5
shows that for every fixed Ko &#x3E; 0 the phase shift jumps quickly to as K - Ko
and g -~ 9i(Ko). This is naturally explained by the existence of the quasistationary state
with an energy K 0 2 in the field of the potential (18) with g = (cf. with Gamov’s
theory discussed, for example, in the book (Ba-Ze-Pe~ ).

The assumption of Th.4 that q has a compact support is of course inessential. This
theorem is true for all potentials obeying (2) with cx &#x3E; 2. Relations (11) and (16) are
incompatible if a &#x3E; 5 and g --; oo, K fixed.

7. Nevertheless, in many cases the asymptotics (10) and (11) are fulfilled without
averaging. For example, it is sufficient [Yaf,2] to assume that N -~ oo but gK-2 is small
enough. The last condition was used in [Yaf,2] only to obtain the following bound for the
resolvent. Let X# be a multiplication by (1 + &#x3E; 1/2. Then the product

has a norm-limit as - --~ 0 and

(In fact in [Yaf,2] a slightly more general bound was verified and used.) Once in some

subregion of (14) the bound (19) is proven, the method of [Yaf,2] permits to obtain there
the asymptotics (10), (11).

In the quasi-classical case gu-2 = c =const the bound (19) was established in [Va]
and [Ro-Ta,1,2]. In these papers c was not required to be small but the non-trapping
condition was imposed. The bound (19) was used in [Ro-Ta,2] to obtain the asymptotics
of K, g) in a more general form compared to (11). Namely, under certain assumptions
it was shown in [Ro-Ta,2] that as g = o0

It turns out that the bound (19) is not really necessary for the asymptotics (10), (11).
Thus one can dispense with the assumptions on the corresponding classical system. The
conditions of validity of (10), (11) were studied in [So-Yaf,l] for the central case. There
the following assertion was established.
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Theorem 6.- Let q(x) = q(r), x E R3,r == Ix 1, and q(r) = qor-CX as r - 00.

Then relations (10), (11) hold true in the region

If, moreover, q(r) &#x3E; 0, then relations (10), (11) are fulfilled in the whole region (14).

Now qas(x) = so that integrals and Ao(qas) can be easily evaluated.
Clearly, as (14), the region (20) becomes larger the smaller a is. The quasiclassical limit
g = cK 2 is permitted in (20) for all a but the large coupling constant limit g -~ 00, k
fixed, is allowed only for a E (2,3). Th.6 can be deduced from the asymptotics of phase
shifts. The latter is given by the following.

Lemma 7.- Let q satisfy conditions of Th.6 and let c be any fixed positive number.
Set

Then

in the region (20). If, moreover, q(r) &#x3E; 0, then (2I) holds true in the region (14).

Now the proof of Th.6 can be obtained by substituting (21) into the sum (17). Further
details may be found in [So-Ya,2] and the complete proof - in [So-Ya,l]. Note that the
condition d = 3 in Theorems 4 and 6 is of course inessential.

Under certain assumptions it was shown recently by A.V. Sobolev that the assertion
similar to Th.6 holds true in the general (not necessarly central) case. In his approach a
is averaged over the incident direction but not over the energy.
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