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THE LIPPMANN-SCHWINGER EQUATION TREATED AS A

CHARACTERISTIC CAUCHY PROBLEM.

by Anders Melin

Introduction.

We shall consider a real-valued function v E C°°(Rn) when n &#x3E; 1 is odd. In order to have

sufhciently regular scattering data associated to the Schr6dinger operator Hv = 2013A~+~(:r)
we shall assume that v satisfies the following short-range condition:

The class of such potentials will be denoted V. By using polar coordinates in the frequency
variables one may write the the Lippmann-Schwinger equation on the form

One has also to impose some condition on 8, k) as Ix I --~ oo in order to obtain a

unique solution of (2). We shall always consider § as a perturbation of the function
øo(x, 8, k) = which solves (2) when v = 0. Moreover, § will be a continuous
function of k E R B 0 with a meromorhic extension to the upper half-plane. If 0  3k is
small then

where (Ho - k2 )-1 is the L - bounded inverse of Ho - k2 . In the case of a compactly
supported potential v this leads to the formula

where T is the scattering amplitude. We also remark that 0 can be defined in terms of the
distribution kernels of the wave operators W± = and one often calls
the solutions of (2) generalized eigenfunctions.

In this note we show how 0, or rather its Fourier transform w.r.t. the variable k, can
be obtained as the solution of a characteristic Cauchy problem for the differential operator
Oz - at - v(x). This viewpoint will give us extra information about § and enables us to
prove that

.. t’V’B

where wo(x, t) is a smooth function. In particular we shall recover an identity which
is usually referred to as the miracle (cf [Nl, N2, C]). We also remark that part of the
discussions here can be carried over to the case of more general short range potentials.
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Construction of 0 by means of intertwining operators.
We shall first consider the equation

In [M5] it was proved that this equation has a solution which is supported in the set
(t/ 2013 x, 8) &#x3E; 0 and given by a series

00

where

In order to describe the regularity of the solution one introduces the set Px of all semi-
norms 

le

Then for each v which satisfies ( 1 ) there is a A = 0 so that

Moreover, for each m &#x3E; 0 there is a positive integer N(m) so that

In order to make the UN,e unique one also has to introduce some conditions at infinity
which will exclude from the considerations functions which are constant in the direction
of ~8, 8). We shall not discuss these details here.

Next we introduce

and we let 6 A be the family of semi-norms

It follows from (6) and (7) then that
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and

It was proved in [M5] that

Hence if Vo(x, t) = E~ VN,Ø(X, t) we must (in view of the definition of VN,8) have

.,

It follows from (6)’ that the integrand is continuous w.r.t. x and integrable w.r.t. t when
.~’sk is large enough. Moreover, t &#x3E; 0 in the support of V~, and t) = b(t) if v = 0.

The main result.

It follows immediately from (6)’ that Ve(x, t) is a smooth function of x and t when t &#x3E; 0,
and the next result implies that one may write V8(x, t) = b(t) + Y+(t)wo(x, t), where Y+
is the Heaviside function and W8(X, t) is smooth when x E Rn and t &#x3E; 0.

Theorem 1. There is a positive number A such that

for any a and ~i. (Here (x) = (1 + IxI2)1/2.)
We have already seen that Ve (x, t) is smooth when t &#x3E; 0, and it follows from (fi)’

also that we need only consider the integral over the interval (0, 1) in (9). Moreover, the
estimates (7)’ imply that it it suffices to prove a similar result for each of the VN,e . Hence
Theorem 1 results from the following
Theorem 1’. If N &#x3E; 1, then

We have now come to the point where one has to study the wave equation. In fact,
the equation (A,, - y) = v(x)U N,8(X, y) implies that

if £8 = Ox - 2 (9, We observe that ,Ce is obtained from the wave operator Oz - (ato )2,
after the substitution to = t + (Xl 0). Hence t &#x3E; 0 is a characteristic half-space for £’8. We
let Go be the image of the fundamental solution of Az - 2(8, with support in the set
to &#x3E; 0 under the substitution above. Then t &#x3E; 0 in the support of G8.

We shall consider approximate solutions of the equation ,CBV (x, t) = v(x )VN,8(X, t),
which is solved by VN+1,0. The construction of such a solution will be similar to the
methods of geometrical optics used in microlocal analysis, and an exact solution will then be
obtained after convolving the error term t) - t) with some fundamental
solution Qg of ,C8 with support in the set t &#x3E; 0. The following result shows that one has
to take Q8 = Go if one hopes to obtain good bounds for the solutions.
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Proposition 2. Assume that t) = 0 and that t &#x3E; 0 in the support of u. If u(x, t)
is temperate w.r. t. x then

where Ja E D’(R) and the integer valued function u(t) is locally bounded.

PROOF: We may assume that 8 = en. The function G(x, y) = u(x, yn - xn) then solves
the equation (Az - Dy)G(x, y) = 0, and yn &#x3E; Xn in its support. The proof of Theorem
3.5 of [M5] shows then that

where x’ = (~1,..., xn_1) and gj E Then

where only finitely many of the gj are # 0 when t stays in any bounded open set w. The
equation (Oz - 28%n 8t)u = 0 implies that

Hence, when t is in any w as above, then = 0 for any j if N is large enough.
Since the gj are temperate in x’, this implies that they are polynomials in this variable
and the proposition follows.

Let ro be the cone Ixl = to and r be its image under the substitution to = t + (X) 8~,
i.e. r is defined by t = Ixl- (x, 0). The half-plane B : t &#x3E; 0 corresponds to Bo : to &#x3E; (x, 0),
which intersects ro only along the ray ~(to8, to); to &#x3E; 0}. Hence -ro intersects Bo only
along the opposite ray ~(to8, to); to  0}, and any distribution uo supported in Bo and
vanishing over a conic neighbourhood of y = R_ 8 has to vanish identically if it satisfies
the wave equation (~z - to ) = 0. In fact, if (x, s) is in the wave cone ro, ( y, t)
belongs to the support of uo and x + y, s + t belong to bounded sets, then Iyl can not tend
to infinity unless tends to -8. In (x, t) space this implies that w = Ge * u is defined if
t &#x3E; 0 in the support of u and u vanishes over a conic neighbourhood of the ray y = R-0,
and w is the unique solution of the equation Cow = u in the space of such distributions.

In order to have Go * u defined on a larger space we introduce the following definition:

Definition 3. DGB is the space of all u in D’(R’ x R) such that Go * exists
for any sequence Xj E §°(R x R) such that bounded, Xj converges pointwise
and 0 as j - oo 0.

If u E and the sequence Xj above tends to 1 then we define Go * u as the limit
of (xju). This limit is independent of the choices made. Moreover, DGB is invariant
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under differentiation, and u --~ Gg * u is a left-inverse for £o on this space in the sense that
u = when u E D’

One can show that u E if t &#x3E; 0 in its support and if it decays as over

some conic neighbourhood of -t for some positive e. One can even allow less restrictive
conditions on the decay of u, however, since we are dealing with potentials in the class V,
we shall only consider the following conditions:

Definition 4. Let f E C°°(Rn). Then we say that S’°(Rn)
such that the support of a is contained in some coneelxl [  -(x, 8~, where c &#x3E; 0.

Here the condition that a E S’°(Rn) means that is bounded for any a.

It is easy to see that V and Ve are Frechet spaces and they are also So- modules.
We let C°°(R+) 0 Vs be the space of smooth maps from R+ to Ve. Set Y+,~(t) _

If j is a non-negativ integer, p = 0 or 1, then Wo,j,p is the space of all functions
on the form t), where U E Ve.

Theorem 5. £0 is bijective from to We,i,O if j &#x3E; 0.

By combining this result with some uniqueness statements obtained from Proposition
2 one can easily prove Theorem l’ now by induction over N. We leave out these details
and discuss instead the proof of the theorem above. 

°

It is clear that ,Ce maps into Wo,i,o. The injectivity of the map follows since
one can show that We,o,l is contained in D’ . Hence convolution with Go gives us a left
inverse.

In order to give the main ideas of the proof of the surjectivity of the map £e in the
theorem we consider the corresponding situation when j = -1 so that Y+~~(t) _ 6(t). This
leads us to discuss the equation

when v E V. We first construct an approximate solution. We set

Then

and E V8.
Choose ~’(t) E Go(Rn) such that ((t) = 1 in a neighbourhood of the origin. If the

sequence 1  Lj grows sufficiently fast, then it is true that the series

converges in Coo and defines an element in Moreover, it follows from (13) that
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is a smooth function of t with values in V8. Moreover, it vanishes when t  0. Since the
dimension is odd, one has a simple explicit formula for G8 which allows one to conclude
that wr(x, t) =- (Go * r)(x, t) is a smooth function of t with values in V8 after multiplication
by ~x~-1. Hence by subtraction wr from w we have obtained a solution Vex, t) of (12)
such that V E 
Remark. The proof shows that ~ vo(x) as c - 0. Hence it follows from (13)
that

This phenomenon was discovered by R.G. Newton and called the miracle by him ([Nl,
N2]).

Remarks about the case of exponentially decaying potentials.
We shall finally discuss a situation when the potential is exponentially decreasing. Let a
be a positive number and assume that one has the estimates

for every a and some positive c. In this case it turns out that ve(x, t) will be exponentially
decaying in the variable t except for some contributions to ye that are due to bound states
and resonances:

Theorem 6. Assume that v satisfies (14). Then there is a finite set Z C Ik E 
-a} so that

where for some constants and Ca

and

All estimates are uniform in 0.

Remark. It is also possible to prove smoothness w.r.t. 8.
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