@article{SEDP_1981-1982____A23_0, author = {Berestycki, H.}, title = {Orbites p\'eriodiques de syst\`emes conservatifs}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:24}, pages = {1--17}, publisher = {Ecole Polytechnique, Centre de Math\'ematiques}, year = {1981-1982}, mrnumber = {671621}, zbl = {0513.70020}, language = {fr}, url = {http://www.numdam.org/item/SEDP_1981-1982____A23_0/} }
TY - JOUR AU - Berestycki, H. TI - Orbites périodiques de systèmes conservatifs JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:24 PY - 1981-1982 SP - 1 EP - 17 PB - Ecole Polytechnique, Centre de Mathématiques UR - http://www.numdam.org/item/SEDP_1981-1982____A23_0/ LA - fr ID - SEDP_1981-1982____A23_0 ER -
%0 Journal Article %A Berestycki, H. %T Orbites périodiques de systèmes conservatifs %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:24 %D 1981-1982 %P 1-17 %I Ecole Polytechnique, Centre de Mathématiques %U http://www.numdam.org/item/SEDP_1981-1982____A23_0/ %G fr %F SEDP_1981-1982____A23_0
Berestycki, H. Orbites périodiques de systèmes conservatifs. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1981-1982), Exposé no. 24, 17 p. http://www.numdam.org/item/SEDP_1981-1982____A23_0/
[1] Problème général de la stabilité du mouvement. Ann. Fac. Sci. Toulousé 2 (1907), 203- 474. | Numdam
,[2] Periodic orbits near an equilibrium and a theorem by Alan Weinstein. Comm. Pure Appl. Math. 29, (1976), 727-747. | MR | Zbl
:[3] Normal modes for non linear Hamiltonian systems. Inv. Math., 20 (1973), 47-57. | MR | Zbl
:[4] A perturbation theory near convex Hamlitonian systems. A paraître. | Zbl
:[5] Existence of multiple periodic orbits for Hamiltonian systems on a starshaped energy surface. En préparation.
and :[6] Periodic solutions of Hamiltonian systems. Comm. Pure Appl. Math. 31 (1978) 157-184. | MR | Zbl
:[7] Periodic orbits for convex Hamiltonian systems. Annals Math. 108, (1978), 507-518. | MR | Zbl
:[8] On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface. Ann. Math. 112 (1980), 283-319. | MR | Zbl
et :[9] Periodic solutions of Hamiltonian systems: A survey. MRC Tech. Summ. Report # 2154 et article à paraître. | Zbl
:[10] A variational method for finding periodic solutions of differential equations.Nonlinear evolution equations (M.G. Crandall editor), Academic Press (1978) pp.222-251. | MR | Zbl
:[11] Critical point theorems for indefinite functionals, Inv. Math. 52, (1979), 336-352. | MR | Zbl
and :[12] Hamiltonian trajectories having prescribed minimal period. Comm. Pure Appl. Math. 33, (1980), 103-116. | MR | Zbl
and :[13] Nonlinear oscillations and boundary value problems for Hamiltonian systems. | Zbl
and :[14] Subharmonic solutions of Hamiltonian systems. Comm. Pure Appl. Math. 33, (1980), 609-633. | MR | Zbl
:[15] Non trivial solutions for a class of non resonance problems and applications. Ann. Scuola Norm. Sup. Pisa, IV, VII (1980), 593-603. | Numdam | Zbl
and :[16] Existence d'une infinité de solutions périodiques de certains systèmes hamiltoniens en présence d'un terme de contrainte. Note C. R. Acad. Sc. Paris 292, série A (1981), 315-318. | MR | Zbl
and :[17] Forced vibrations of superquadratic Hamiltonian systems. Acta Mathematica, à paraître. | Zbl
and :[18] Existence of forced oscillations for some nonlinear differential équations. A paraître. | Zbl
and :[19] periodic solutions of nonlinear vibrating strings and duality principle. A paraître au Bull. A.M.S. et Proc. Symposium on the mathematical heritage of H. Poincaré. | Zbl
:[20] A topological method for the existence of periodic orbits to conservative systems. A paraître. Voir également la Note aux C. R. Acad. Sc. " Orbites périodiques de systèmes conservatifs: résolution de problèmes non-linéaires équivariants sous l'action de S1". A paraître (1982).
and :[21] Global Hopf bifurcation from a multiple eigenvalue. Nonlinear Analysis, T.M.A. 2 (1978), 753-763. | MR | Zbl
, and :[22] An equivariant J-homomorphism theorem and applications. A paraître.
:[23] Bifurcation theory for Fredholm operators. Memoirs A.M.S., 7, n°174, (1976) | MR | Zbl
:[24] periodic solutions of large norm of Hamiltonian systems. A paraître. | Zbl
:[25] Solutions of minimal period for a class of convex Hamiltonian systems. A paraître. | Zbl
and :[26] Borsuk-Ulam theorems for arbitrary S1 actions and applications. MRC tech. Sum. Rep. # 2301 (1981) et et article à paraître. | Zbl
, and :