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§ 1. Let P(x, D) u = 0 be a single pseudodifferential equation
of finite order m defined in a neighborhood of (x , y I% ø) , a point in

° ° 

the cosphere bundle V-l S M of a real analytic manifold M of dimension

n, and denote with V and V its characteristic variety and the complexe

conjugate thereof, namely the complex hypersurfaces in a complex neighbor-
hood U of (x 0 v, co) defined by P m (z,1) = 0 and P m (Z,C)(= P m (~z, ~ ) ) _ 0,

respectively, P denoting the principal symbol of P. If f(z,~) = 0 be

a reduced local equation for V, one can write P m (z9c) = 
. - m

with some integer 1 &#x3E; 0 and non vanishing factor a(z,I) o

Assumption 1 i (xa, is a non singular point of V as well as of
-.. - 

o o ..- - 

-

vn Vo 0

Assumption 2 : The restriction onto VfIV of the canonical 1-form
m n -

l oco ° +, n dzn does not vanish at (x , 0 y i 0). °

The codimension of V n V in U is either 1 or 2 according

as V=V (the"real characteristics"case) or not. In the latter case, the

degree of osculation of V and V is a constant integer, say k(~ 1 ) , along

vn V in a neighborhood of (x , i co) 0 This case we classify further into
_ 

o 0 
_

two, according as Vn V is involutory or not () Here V () V is said to be in-

volutory if, together with the (reduced) local defining equations

f = f 2 = 0 of their Poisson bracket vanishes on V () V - (Of
i l 2

course, similar definition applies to a subvariety of an arbitrary codi-

mension). In the opposite case of non-involutory Vn V, (x , i’ 0 00) is a
o o

non degenerate point 0. o

Assumption 3 : In the case of non real V and non invalutor V n V, our

(x y co) be a non degenerate point of V n V co

o 0 - 

----

Note that in this case assuption 3 plus the first part of

Assumption 1 implies Assumption 2 and the second part of Assumption 1.

Theorem 1 : Under the Assumptions 1, 2 (and 3, in the case (iii) below),
the equation P(x,D)u = 0 ~.s microlocally equivalent to one of the followin

equations, considered at x = 0, ~ = (1, 0, 0, o .. , 0). e (_Note that our

assumptions implies n &#x3E;- 2 in the cases (i), 9 ( iii) and n ~ 3 in the case

( ii) e )



XVIII.2

(i) (The real characteristics case)

(ii) (The non real characteristics case, with involutory v n V)

(iii) (The non real characteristics case, with non involutory VnV)

By virtue of the principles of microlocal analysis

developed in [1], this theorem is readily reduced to the corresponding
geometrical statement, namely to the following.

Theorem 2 : By a real contact transformation any hypersurface V satis-

fying assumptions 1, 2, 3 reduces microlocally to one of the following

The case (i) is a classical result since Lagrange-Hamilton-Jacobi (see 
The case (iii) is proved in [2]. Here we shall supply a proof for the case

(ii)., by slightly modifying the proof of theorem 2.2.1 of [11 (which says
that an involutory manifold V of an arbitrary codimension r which inter-

sects transversally with its complex conjugate V at an involutory
submanifold (of codimension 2r) and satisfies the Assumptions 1 and 2 above

at (xo, (0)’, can always be contact - transformed microlocally to ’

2 + iC3 = 0 C2r + iC2r+l = 0 considered at x = 0, ~ = (1, 0~..~0).
We always have 2 r+l ::; n ) .
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Namely, we first prove Lemma 3 below, and thence our statement above (as

well as theorem 2.2.1 cited above) will follow .

~ 2. Let V denote an involutory submanifold of codimension r

in U, and V. a submanifold of codimension 1 in V, both of them passing
0

through (xo, o Their local defining equations will be given by
o o

° ° ° fr = 0 and ° ° ° = fr= respectively. (Hence q = 0 def inec-

a non singular hypersurface U in U passing through (x , i0) which
o o o

intersects transversally with V at V o .) Here and in,what follows, all

functions to be considered on U are holomorphic functions in (z,’) =
which are homogeneous in 

n n J

Let A denote an-open set in Cr containing the origin whose

point we denote by X = (À1,8oo,Àr). L~t 4l (X) * 4l (Z,1 1 À) and

*(X) = be holomorphic functions in IJX A which vanish on Vx A.

Hence we can write -

holomorphic in a neighborhood of (x 1, in

U x A. Finally, we denote with the determinant of the following

r x r-matrix

We note that the equation Q (7~) _ 0 as well as the condition that A(À)

should be non vanishing for a generic vector À, depends only on V, V , y
o

4l(X) and W(À) and is not affected by the ambiguity of the choice of fo,
J

q, 4l ~ (X) We now state.
J J

Lemma 3 : Let holomorphic functions which vanish at (x 0 
be given on U so that 0 on V . Then they can be prolon-201320132013201320132013201320132013 o 20132013201320132013 ol? ? 

o 20132013 o 201320132013201320132013-2013201320132013201320132013"20132013201320132013

ged to holomorphic functions in a neighborhood of U 0 in U so that

~~r(h 1 ,...,h r ),~(h , 1 s o e,h r )~ = 0 holds identically. o
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. And indeed, one can construct such by solving a

Kowalewskian system of (non-linear) first order partial differential equa-

tions, as will be seen in the below.

We remark that, if denote any holomorphic extension

. of h . into a neighborhood of U in u, the restriction onto 

coincides with one has

o

and ’ == 0 mod. f.,...,f .a- _ mod. 1’°°°’r°
J

Proof of lemma 3 : Along with the ordinary Poisson bracket

we have the following "prolonged"

expression for the bracket of and W ( W) = o/(z,’¡w)

involving functions w o = w o ( z, ~) e
J J

. aw 1 ow 0 
.

with (w )1 k and denoting ---ð respectively. The right
Z iyK  iK OZ. k

hand side expression will be denoted Since

V is involutory, there exist holomorphic functions @ (X) in a

neighborhood of in U x A s6 that we have {.B)/(~)~(~))

whence we obtain

by setting
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(the similar expression with t (w) and interchanged).k9i

Let us further consider the case where w. = w.(t) = w1 (7-1 C ; t)
J J J

involve a parameter t and are holomorphic in E Ux C in a

neighborhood of (x 09i~0;0). Of course we have (gs (w( t) 1 ’, 4l ( w( t) ) ) =

as long as t is an independent parameter, while we

obtain) when t is substituted by q(z,C) , the following identity :

The expression inside-the-bracket on the right hand side is again a

linear form of fl,ooe, 9 fr9 and, by equating to 0 each of the coefficients

we form a system of equationso

or equivalently

This is a determined system of first order differential equations for

unknown funct ions in (z,,;t), and under the assumptions of the

lemma, one has a well-posed Cauchy problem if one assigns to w . (t) initial
J

data at t = 0 such that E(w(0) ) / 0. Therefore, existence of prolongations
h. of h . with the properties claimed in the lemma is implied if one
J oj z

first choose an arbitrary holomorphic extension h . of h . to a
, J oj

neighborhood of U in U, then solves the above system of equations by
,j 

0

assigning h. as initial data (see,the remark following the lemma) to
J

obtain the local solutions w.(z,,;t) and f inally, defines h. by
J J

h ( z , i ) = w.(z;q(z)). Note that h . and h . co incide on U because we
J J J J 0
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Remark 1 : *i, h . are all of real coefficients (i.e.

= 4l . ( z , § j X) , etc.) h. can also be chosen real-coefficiented.
J J J

Remark 2 : If W is another involutory submanifold of codimension

s(~r) in U containing V as submanifold (i.e. V eWe U) , if our defining

equation f1 = = 0 of V is so chosen that the first s equations
define W, and if ~(X) vanishes on W x A so that it has the form

ip(À) = ip1 (À)f1 + ... ° then we have

provided that {.q(w(0)) / 0 at o In particular, if initial data
ob * 0 0

h are so chosen that 4 )I 
w 

= 0 holds for j = 1,...,s , y then one
. 

J W

has for j = 1, ... , s, because for a holomorphic function

g on U, l,o..,s is completely determined by g) (and hence
J w w

one can naturally talk about for a holomorphic function g on
j 0 W o 

-

U ).
o

Proof : Combining the equations

and taking into account the congruefice 4l (w) z 0 mod f 1 , ® .. , f S) we have

and this we regard as a differential equation-on W, satisfied by an

unknown function = of (Z,C;,t) modulo 

(~ is regarded as known). Then the given *(w(t)) as well as t

independent x#(w(0)) both constitute holomorphic solutions to this

equation corresponding to the same initial data 

Therefore by uniqueness of holomorphic solutions they coincide. (q.e.d.)
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§ 3. Proof of theorem 2

We can assume without loss of generality that the

reduced principal symbol be of the form f = f (cf. [2]).
_ 

’ 1 2

The involutory V n V is defined by f1 = 2 = 0-Letting a homogeneous poly-
nomial A of u, v be given by

we , j as f ollows :
J J

so that we have

and apply lemma 3 to it. The matrix (b equal to

Hence which is the determinant of

(Similarly we have
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So, in the case of k s 2, by choosing a real-coefficiented

q(z,C) such that = 0, / 0 which of course exists,

and initial data hoj, j = 1,2, such that / 0 (e.g. h 
ol 

= 1,

ho2 = 0), the condition 6 h02 ) / 0 holds at and h oj are

prolonged to such hj that satisfy [(hl,h2),(hl,h2)} = 0. The
J 1 2 ’ 1’ 2 

°

homogeneous degree of (hi h2), and in C-variables can be
adjusted (to 0, for example) by a corresponding adjustment to the
initial data The property that h ol / 0 at (x ,i ) also impliesOJ 

k 
0 0 0 

k
that (hl,h2) ,+ i(*(h h k 0 is equivalent to l if2 = 0 as a
reduced defining equation of V, and = 0 to f 1 = f 2 = 0

as reduced defining equations of V n Vo Consequently d~, d* and ware

linearly independent at ). The classical Jacobi theory now tells
that ~(hl,h 2) and *(hi,h 2) go to z 2 and z 3 by a suitable contact transfor-
mation which is real coefficiented and sends (x ,i~ ) to (0yi(190,...90)).
Then the defining equation of V assumes the form z 2 = 0 and our

theorem is proved. In place of (z2’ z3) one may as well choose

(C /Cl.9z ) or (C /Clg C,3/c ) to result C + 0 k c - 0 or C k-1 + tO 2 + 0 or 1 2 + 0

as the standard form of defining equation of V. (q. e. do)

Finally we show how the key Lemma 2.2.2 to the theorem
2~2.1 of [11 is derived from lemma 3~ Let again V be an involutory mani-
fold of codimension s whose local defining equations f 1 = o o = fs = 0
have the property that dfil ... ldfs, dfig ..., df S9 w are linearly
independent in the neighborhood of (x oli0 ),, 0 (Whence V intersects with

o o

its complex conjugate transversally), and assume V n V is also involutory
(of codimension 2s) o Here f c is defined by 

J i f J

Choose first a such that (Gf IV = 0 (i.e. o 
,

= 0 mod. " fl,...,fs) for and such that dG, df ,...,df ,
ware linearly independent at (x .IT) ). Choose then a real coefficiented

function so that = 0 and (G,ql(x 0,0) / 0 hold. Defineo o o o

= X 1 f 1 + v o o X 1 fc 1 
respectively. This means in particular that V, r, X = r)9
f = (fil...Ifr) and (~,~) in lemma 3 are now replaced by V n V, 2s
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~~~, ~ c)., respectively. Under these circumstances in lemma 3, as the

determined of the matrix

Hence, by lemma 3 and remark 2 to lemma 3, we can conclude that by a sui-

table choice of h.(t) we have
J

while d$(h(q))y and w are linearly independent at 

This is lemma 2.2.2 of Ill.

REFERENCES

[1] M. Sato, T. Kawai and M. Kashiwara : Microfunctions and pseudo-
differential equations, Proceedings of Katata Conference 1971,
Springer,lecture notes in mathematics, 287 (1973) pp. 265-529.

[2] M. Sato, T. Kawai and M. Kashiwara : On the structure of single linear
pseudo-differential equations, Proc. Japan Acad. , 48 (1972)
pp. 643-646.


